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Abstract 

A number of papers and articles have been written about formation-based pathfinding.  Many 
of them, however, make the assumption that the units involved can move in any direction and 
can turn on a dime.  This paper presents our solution in Force 21 to the problem of controlling 
real-world vehicles in formation, what we learned from it, and what we will do differently the 
next time. 
 
An alternative algorithm is presented, which makes use of a pre-computed visibility graph and 
Dijkstra's shortest path for the broad movement strokes, per-platoon morphing formations for 
moving along that path, individual vehicle AI for moving to formation position and Reynolds' 
steering behaviors for avoiding dynamic objects in the world.  The tricky cases of maintaining 
temporary bridges and roads (faster, shortcut paths) in this environment are also covered. 

1 Introduction 

Pathfinding has been a problem in a broad range of disciplines including robotics, artificial 
intelligence and artificial life.  Some of the earliest algorithms involve searching a space, 
whether it is defined by a graph or path-planning for a robot.  Nearly all games that involve 
maps and autonomous units require some sort of pathfinding. Tactical and strategic planning 
can be finessed through peeking at the player’s units or other means of cheating, if necessary. 
It’s also the aspect the player will see the most often in a strategy game, since he or she will 
be manipulating units indirectly and expecting their AI to behave and move in an intelligent and 
snappy manner.   Therefore pathfinding is the most exposed and the most difficult part of the 
AI system. 
 
The algorithms presented in this paper are the result of the work of many different people over 
three separate projects.  The first pass at the basic visibility graph algorithm was done for 
Planet Texas by Peter McMurry.  It was later revised and put into a form suitable for Force 21’s 



predecessor, Dominant Species, by Jon Owen.  Force 21 was built on Dominant Species’ 
terrain, graphics and to some extent simulation engine and so also inherited the pathfinding 
methodology.  Various extensions to the algorithm were needed for Force 21’s particular 
needs – that work was done by Jim Van Verth and Victor Brueggemann. 

Related work 
 
Other solutions to the problem exist, and were examined prior to starting our approach. The 
most commonly used path-determination algorithm is A*search. [Stout] provides a good 
overview of the general A* search algorithm, and [Vinke] discusses a real-time implementation. 
It works on the principle of searching for a local minimum based on a heuristic function.  As 
such, it is only as good as the heuristic used, and as it is looking for minima if implemented 
poorly it can get bogged down quickly.  It is also only good for static environments and very 
poor for searching large spaces.  There is also a variant of A* called D* which purports to be 
good for searching dynamic environments, but it gets very expensive with increasing number 
of elements. 
 
A first pass at A* was attempted in Dominant Species but it was decided that it was 
computationally too expensive and not necessary because terrain slope was not a factor in the 
movement of the creatures.  Force 21 inherited the Dominant Species search algorithms and 
attitude.  Later changes in game design – namely terrain slope affecting vehicle speed – would 
have benefited from some sort of A* search, but there was no time in the schedule. 
 
The next stage of the problem, moving the units along the path, is presented by Dave Pottinger 
in [Pottinger].  Pottinger’s approach encapsulates both the problem of arranging units in a 
tactical group, collision detection, and the actual movement of them through the world.  
However, his algorithms are best suited for non-realistic games with large groups of units 
(100+).  Our system has a physically-based engine for moving objects through the world and 
so his algorithms are not entirely appropriate.  However, some of the techniques presented 
were incorporated into our system, in particular the notions of high-level and low-level 
pathfinding, and some of the aspects of formation and collision management.  

2 Framework 

Before presenting our algorithm, some basic concepts about our simulation engine and design 
are necessary for proper understanding. 
 
Force 21 is real-time strategy game in a 3D environment, with collections of autonomous 
moving objects or vehicles.  There are three main classes of vehicles.  The first are tracked 
vehicles, which are primarily battle tanks and the like.  These vehicles move slowly, but can 
move one set of treads forward and one backward, and so turn in place.  The second are 
rotary wings, which are helicopters.  They move quickly through the air, and like the tracked 
vehicles can turn in place.  The last are the wheeled vehicles, which are fast-moving ground 
vehicles, but have a limited turning radius, and cannot turn at all when stopped. 
 
Each vehicle has physical characteristics, most particularly vectors representing position and 
velocity.  The simulation engine is a physically-based system which controls how the vehicle 



and other physical objects move through the world based on their physical characteristics.  
Part of this is a real-time collision system, which detects collisions and computes appropriate 
response velocities.  Objects are moved by either directly setting their position, or setting an 
acceleration vector, which over time will change object velocities and thus their positions. 
 
Players do not control individual vehicles.  Instead they issue orders to platoons, which are a 
collection of up to five vehicles.  Platoons also have their own position, which is generally the 
location of the head vehicle.  The platoon AI or tactician interprets the orders and issues 
appropriate commands to each vehicle’s AI or crew through a message-passing system.  If 
necessary, the crew then sends driving commands to each vehicle. 
 
Vehicles in a platoon are arranged in a formation, each of which is designed for a particular 
situation.  The four formations are shown in Figure 1.   As vehicles move across the landscape 
they are expected to maintain formation within their platoon as well as avoid obstacles and 
each other. 

A general overview of the pathfinding algorithm is as follows.  An order to move is issued to the 
platoon.  The tactician for that platoon computes the shortest path across the map to avoid 
known static obstacles and then begins moving the platoon along it.  While platoon moves its 
tactician issues commands to each crew telling it where to move to in order to maintain 
formation.  Each crew in turn checks for other vehicles and computes a steering direction for 
the vehicle towards the desired formation position.  The vehicle then computes driving 
accelerations appropriate to the vehicle type that best move the vehicle in the desired steering 
direction. 

3 Platoon-level pathfinding 

As mentioned above, the first stage in the pathfinding algorithm is computing a safe path for 
the platoon.  The tactician considers only static objects, i.e. collections of trees or forests, 
buildings, and impassible terrain.  The one exception to this is a bridge.  Bridges can be added 
(by a bridge-layer) or removed (by destruction or a bridge-layer), but are still considered as 
part of the platoon-level pathfinding algorithm.  This is discussed below. 
 

Visibility graphs 

The primary part of the algorithm is a minimum cost graph-search across a data structure 
called a visibility graph.  Visibility graphs are computational geometry constructs originally 

Figure 1: Four formation types 

Row Column Wedge Reverse wedge 



designed and primarily used for robotic motion planning.  Good coverage on constructing a 
visibility graph can be found in [O’Rourke]. 
 
As an example of computing a visibility graph, take a top down view of a room, with polygons 
representing the obstacles in the room.  The visibility graph for the room uses the vertices of 
the polygons for the vertices in the graph, and weighted edges between the graph vertices 
where there is a clear path between the corresponding polygon vertices (i.e. a line between the 
two polygon vertices crosses no polygon edges).  The weight of each graph edge equals the 
distance between the corresponding polygon vertices.  To compute the shortest path from 
point a to point b, then, requires adding a and b into the graph with the corresponding visibility 
information, and then finding the shortest path in the graph. 
 

The outer boundary polygon is called the container.  The inner polygons are called obstacles.  
There can be multiple container regions containing their own set of obstacles. 
 
The shortest path is computed by using Dijkstra’s shortest path algorithm for weighted graphs.  
[O’Rourke] is again a good source for a description of this algorithm.  Other coverage can be 
found in [Even] and [Bondy]. 

Our heuristic 
 
As mentioned above, the correct way to compute the path for two given points is to compute  
the visibility graph including those two points and then compute the shortest path from start to 
finish.  Pre-computing the visibility graph can be done offline and loaded in at game time.  The 
problem is adding the two search points.  For a simple graph the cost of determining visibility 
information between a new vertex and all other vertices in the world is relatively low, but the 
cost can grow prohibitively as the number of nodes and the complexity of the scene grows.   
 
To avoid this cost, a heuristic is used, which works in most cases.  First of all, visibility is 
computed between the two search points.  If there are no obstacles in the way, there is no 
need to search the visibility graph.  If there is at least one obstacle, the intersection point with 
the first obstacle along the segment is computed and added to the graph.  Links are added to 
the neighboring vertices on that polygon edge.  Similarly, the last intersection point along the 

Figure 2.1: polygon map Figure 2.2: visibility graph 



segment is added to the graph.  The search is then computed between the two intersection 
points (see Figure 3.1). 
   
The resulting path is improved by checking to see if the edge between the start point and the 
second point in the path is clear.  If so, the first point is thrown out and the second point is 
used.  The new second point is considered, and so on, until a failure is detected.  A similar 
check is done between the end point and the second-to-last point in the path. This removes 
unnecessary “kinks” in the path (see Figure 3.2).  Appending the start and end points to the 
culled path creates the final path. 
 

Buildings and forests 
 
Incorporating this visibility graph into a scenario is very straightforward. Using our level editor, 
artists or designers mark off impassible terrain features with polylines. The level editor ensures 
that the polylines created cannot cross or enclose other polylines, which would create an 
invalid visibility graph.  Upon closing the level, the editor creates the visibility graph based on 
those polylines and saves it as part of the terrain file.  The terrain file is read into the game 
upon mission load and the corresponding visibility graph used for pathfinding.  One additional 
change is that the path is slightly offset from each obstacle to allow vehicles and platoons to 
clear them (otherwise they would run into the corners of obstacles). 
  
In our maps there are additional static obstacles that were not stored as part of the terrain 
information, primarily buildings and forests.  We did not do this for two reasons: 1) because we 
do not load 3D information in our editor, we did not have the bounding boxes for the buildings 
and 2) this gave us a way to distinguish between terrain features and static objects.  Instead, 
after the visibility graph file is loaded in, the game adds polylines for the forests and buildings.  
The kicker is that while the editor does not allow illegal polylines, a forest or a building 
boundary added later can potentially cross another polyline.  An algorithm was devised that 
clipped a container if a non-container polyline crossed it, and created the union of two polylines 
if neither is a container polyline.  If a building or forest polyline lies inside another non- 
container polyline, it is not considered at all.  This way the artists can have chains of 
intersecting collections of trees and create one large forest. 

Figure 3.1: new start/end points Figure 3.2: culling path 



Roads 
 
The design called for vehicles to move faster on roads.  If we had used an A* algorithm, this 
would have been relatively easy – just make the weights on the road vertices lighter than their 
surrounding vertices.  However, since we were using a graph-based scheme, another solution 
was necessary.   
Roads are a series of up to six vertices that are connected together to form a path.  Joining 
roads together using road junctions can create longer paths, or Ts and crossroads.  The level 
designer draws a road, places a road junction near the end of that road, and then starts 
another road nearby to join them together.  This series of roads and road junctions forms the 
basis for both the graphics algorithm that draws the road, and the pathfinding algorithm. 
 
A graph is created using just the roads and road junctions, but with a lower weight (1/2 the 
Euclidean distance) on the edges between vertices.  This is stored in memory in addition to the 
original visibility graph.  Once a path is generated using the visibility graph (and a map has 
roads), it is broken into smaller segments.  Each vertex in the new path is compared to the 
road graph.  If a path vertex is determined to be close to a road vertex, an edge is created 
connecting the two vertices together.  After all the path vertices are checked, the shortest path 
is found on this new graph.  If the path generated is shorter, it is used for the final path.  To 
avoid overcomplicated paths, collinear vertices are removed before the path is returned.  
 

Bridges 
 
The design also called for bridges – bridges that can be added in the middle of the game, or 
removed (by destruction or bridgelayers).  To add an additional complication, if a faction in the 
game doesn’t know the bridge is gone, the pathfinding algorithm for that faction needs to act 
like it was still there, and only react accordingly when it was discovered that it was gone. 
 
This is done in a similar fashion to the roads.  A graph is created which includes all the bridges 
in the world.  Each bridge takes up three vertices – two for each end, and one for the middle.  
Edges connect the middle vertex to the two end vertices.  A path, using the main visibility 
graph, is computed between the ends of each bridge.  If a path can be found from one end of a 
bridge to the end of another bridge, an edge is created between those two vertices with a 
weight equal to the length of the path.  The path is stored for later use.  
 

Figure 4.1: Road network 
and initial path 

Figure 4.2: Road network 
and new path 



Again, like a map with roads, a path is computed using the visibility graph.  Then, if there are 
bridges in the world, paths are computed to all the end vertices of the bridges in the world from 
both the start and end search points.  If a path is found, an edge is created between the two 
vertices with weight equal to the length of the path, and the path is stored.  Finally, a shortest 
path search from start to end is done on this modified graph, and if the newly computed path is 
shorter than the original, it is used instead. 

 
As one might guess, both the road and bridge pathfinding algorithms can be quite time-
consuming, and so heuristics were derived to avoid calling them.  For instance if a path was 
relatively straight, or relatively short, it was deemed unnecessary to continue further.  On the 
other hand, if a visibility graph path doesn’t exist, the start and end points may be in separate 
containers, and that makes the bridge search mandatory. 
 
One other issue with bridges is that only one platoon at a time can be on them, since there is 
no room to pass. If a platoon is on a bridge, the bridge is marked with that platoon ID and other 
platoons must wait before crossing.  Moving resting platoons to make way for moving ones 
was deemed to not be a major issue.  Either the platoon on the bridge is a friendly unit, in 
which case it can be moved off by hand if necessary, or it is an enemy unit in which case it can 
be destroyed and the bridge is freed for crossing. 

Swamps 
 
Swamps are areas where the vehicles move slower over the terrain.  This was built into the 
visibility graph by making some obstacles passable.  Edges are constructed within the obstacle 
and given a higher weight than normal.  In that way, if the paths through an obstacle and 
around it have approximately the same Euclidean length, then the best path will be around the 
obstacle.  However, if the path around a swamp obstacle is very long, then the best path will 
be through it, even though the vehicle slows down briefly. 

4 Formations 

The above works fine for a platoon with a single vehicle.  However, computing paths in this 
way for multiple vehicles in a platoon would be prohibitively expensive, they would not 
necessarily move in formation, and since they may move at different speeds would arrive at 
different times.  A more structured means of moving a platoon of vehicles is necessary. 
 
 

Figure 5.1: initial bridge graph Figure 5.2: bridge graph with start 
and end nodes added 



Formation movement 
 
As mentioned above, each platoon is assigned a current formation.  This is defined as a set of 
2D vector offsets from the platoon’s position, which are oriented to match the platoon’s 
heading.  The vehicle that lies nearest to the platoon’s current position (i.e. an offset of zero) is 
known as the lead vehicle.   
 
Instead of moving a single vehicle along the path, we move the platoon itself.  As it moves, the 
heading of the platoon aligns itself with the current segment of the path.  When it approaches a 

new segment, it begins to turn to align itself with that new 
segment.  Note that the final heading of the platoon could 
be different from the alignment of the final segment, so the 
platoon makes one last heading change to match the 
desired heading (see Figure 6). 
 
We could have moved the lead vehicle along the path and 
followed its position, except that platoons in Force 21 are 
fixed – a vehicle does not get promoted up as other vehicles 

are removed or destroyed.  The means that the lead vehicle position may be empty, so a 
separate position for the platoon is needed. 
 
Once the platoon has moved to a new position and heading on the path, the tactician sends 
the vehicle’s crew a message telling where it should be in order to maintain formation with rest 
of the platoon.  Note that this is generally not the actual position of the vehicle, except perhaps 
when the platoon is at rest.  Instead it represents a point for the crew to drive to, hence the 
term drive-to point.  Below we discuss how the crew steers for that point, but suffice it to say 
for now that it tries its best to turn towards and arrive at its assigned goal. 
 
Because vehicles have different speeds, and may need to slow down to avoid obstacles, the 
platoon cannot move forward at a constant rate.  The initial speed of the platoon (maxspeed) is 
set to the speed of the slowest vehicle.  The current position of each vehicle is then compared 
with its current drive-to point.  The platoon will progressively slow down as the slowest vehicle 
drifts further and further behind and eventually reach a steady state.  Eventually if the distance 
to the furthest vehicle surpasses a certain limit (2*maxspeed), the platoon stops and waits for 
the straggler to catch up. 
 
When a formation is changed, even while moving, the new drive-to points are immediately 
computed.  Because of this, there may be a slight delay in movement while the vehicles jockey 
into their new positions.  In retrospect, it would have been better to gradually interpolate 
between the old positions and the new ones. 

Column formation 
 
Column formation is a special case.  In column formation, the vehicles move in a line, with the 
second vehicle following the lead, the third following the second, etc.  Originally this was done 
in similar manner to the other formations, with an offset computed directly from the platoon 

Figure 6: changing heading of 
moving platoon 

 



position.  The problem is that when the platoon turns a corner in the path, it looks very 
unnatural – the vehicles wheel out from their positions and then lock on to the new direction.  
Also, the last vehicle has to move the farthest distance and usually ends up out of position 
quickly, so that the platoon has to wait for it to catch up.  Instead, the desired behavior is that 
all the vehicles stay on the path and follow it no delays, forming a snake-like pattern. 
 
The process for determining the positions for column formation is as follows.  Begin from the 
current platoon position.  If there is no path, compute offsets backward from the heading of the 
platoon.  If there is a path, interpolate backwards from the lead position for a fixed distance 
along the path.  If the path bends, interpolate the remaining length along the new segment.  
The interpolation position gives the drive-to position for the next vehicle.  This continues for all 
vehicles in the platoon.  Note that if we start from the beginning of the path, there are no 
segments to interpolate along.  In order to simplify the code, an additional segment is added to 
the beginning of the path along the original heading of the platoon. 

Obstacle avoidance 
 
The above works quite well but doesn’t take obstacles into account.  See figure 7.1, which 
shows a formation passing by a terrain feature – the drive-to positions on one side actually 
pass within the obstacle.  Even worse is a narrow spot, where drive-to positions on both sides 
pass within the obstacle (figure 7.2).  The worst case is where the platoon passes by a narrow 
sliver of an obstacle, which can strip off one of the outer vehicles and destroy the formation 
(figure 7.3).   

 
How to compensate for this?  Well, we know that the path computed by the main platoon 
pathfinding algorithm is always safe.  So, if the line from the lead vehicle position to another 
formation position crosses an obstacle or a container boundary, the drive-to position sent to 
the vehicle is pushed away from the obstacles towards the line defined by the path, i.e. it is 
interpolated towards a column position.  When the formation position moves out of the 
obstacle the drive-to position is interpolated back to the original formation position. 

Figure 7.1: Formation 
collision with one obstacle 

Figure 7.2: Formation 
collision in narrow spot 

Figure 7.3: Formation 
collision with sliver 

Figure 7.4: Formation 
modified with one obstacle 

Figure 7.5: Formation 
modified in narrow spot 

Figure 7.6: Formation 
modified with sliver 



5 Vehicle-Level Pathfinding 

The above works reasonably well for computing positions for units that can turn quickly and 
move in any direction.  The vehicles that we dealt with in Force 21 were not so flexible.  
Helicopters and tanks take time to turn and accelerate.  Wheeled vehicles rotate in place to 
any facing – they can either turn left or right in a limited radius.  To turn around, they either 
need to drive in a large arc, or back up while turning in one direction, and then move forward, 
turning in the opposite direction (the familiar three-point turn).   
 
In addition, vehicles need to avoid each other, and vehicles in other platoons.  While collisions 
can’t always be avoided, it makes the platoons and the vehicles in them look more intelligent if 
they behave like they’re trying to avoid them. 
 
To meet these goals, some crew behaviors based on Craig Reynolds’ steering behaviors 
[Reynolds] were created.   

Drive-to position 
 
The first task is to get the vehicles to follow and arrive at the drive-to points described above 
under formations.  This is done through a modification of the seek behavior described by 
Reynolds.  First, the vector from the current position of the vehicle to the drive-to point is 
computed.  This gives the base velocity and steering direction.  The length of the vector is the 
base speed.  If this is less than a certain value (2.5 meters), the vehicle has arrived and no 
change in steering or velocity is computed.  If it is less than the maximum speed of the vehicle, 
the vehicle needs to brake, and the speed is halved. Otherwise it is clamped to the maximum 
speed.  The velocity vector is scaled to this value and sent by the crew to the vehicle as a 
steering command. 
 
The desired heading of the vehicle is determined by the platoon.  As previously mentioned, as 
the platoon moves along its path it turns to follow the path, and may even turn to face 
backwards due to the whim of the user.  In the ideal case, the vehicles in that platoon should 
face in the same direction, but as discussed below, this does not always happen. 

Desired heading and velocity 
 
As discussed above, the AI sends the vehicle a desired heading and velocity.  How the vehicle 
responds to that depended on the type of vehicle. 
 
After some experimentation, it was determined that the best way to break this down was to 
compare three vectors –the desired velocity, the desired heading, and the current heading. 
This boils down to four cases.  In this discussion, “the same direction” means that they fall 
within 180 degrees of each other.  The four cases can be made clearer by presenting them in 
terms of a goal, i.e. a seek behavior. 
 



They are all pointing approximately the same direction 
 
In this first case, we want to reach a goal that is in front of us, and end up at approximately the 
same heading that we have now.  This can be met by driving forward and turning gradually 
toward the goal.  This is true for all three vehicle types.  Once the goal is reached, the tracked 
and rotary wing vehicles can stop and turn towards the proper heading – the wheeled vehicles 
can’t turn in place so just stop there. 
 
Desired velocity and heading are pointing the same direction, but current heading is not 
 
In the second case, we want to reach a goal that is behind us, and end up facing the opposite 
direction from where we are now.  With a tracked or rotary wing vehicle, this is met by turning 
in place until the conditions meet those for case one, at which time it moves forward and turns 
towards the goal.  A wheeled vehicle cannot turn in place, however, so it needs to back up 
while turning until conditions for the first case are met.  The direction of turn is determined by 
the difference between the two headings – if the difference is positive, the wheels are turned to 
the right, otherwise they are turned to the left. 
 

Desired heading and current heading are pointing the same direction, but desired 
velocity is not 
 
In the third case, we want to reach a goal behind us but with similar heading.  Most of the time 
this can be achieved by driving backwards and turning gradually to the goal.  For long 
distances, however, this is not smart behavior, particularly with tracked and rotary wing 
vehicles.  In this case, they will back up while turning around.  Once they are facing the goal, 
this switches to case four, below.  Wheeled vehicles will back up and turn to face the goal as in 
case two, at which point they will also switch to case four. 
 
Desired velocity and current heading are pointing the same direction, but desired 
heading is not 
 
In the fourth case, we want to reach a goal ahead of us, but turn around when we get there.  
For tracked and rotary wing vehicles, again, this is easy.  We drive there normally, and turn 
around upon arrival.  Wheeled vehicles, as above, will head to the goal, but cannot turn once 
they get there so will end up facing the wrong direction.  This was accepted as a compromise 
considering the difficulties of steering them and maintaining formation.  In compensation, their 
weapons were set so that they could fire in an arc of 360 degrees, so even though they were 
facing backwards, they could defend themselves. 
 

Figure 8.1: goal in front Figure 8.2: goal behind, 
facing away 



Check for bad position 
 
This generally works well except in certain cases, where an obstacle falls between a drive-to 
point and its corresponding vehicle.  This can happen when a platoon is making a sharp turn 
around a building and the vehicles are just a little too far behind (Figure 9).  It not desirable for 
the vehicle to hit the building/obstacle for aesthetic and practical reasons (the vehicle may get 
stuck), so this case must be detected and handled.  This is detected by doing periodic checks.  

If the vehicle is a beyond a certain distance from the drive-to point 
(√3*maxSpeed) then check to see if the line from the vehicle to the 
drive-to point crosses a pathfinding boundary.  If so, compute a path 
for just that vehicle to the drive-to point, and use the path to compute 
steering direction.  The path is followed until almost the end, and 
then normal driving begins again.  Originally the path was followed 
for only a few nodes so that the vehicle could return to normal 
driving as soon as possible and not hold up the platoon, but this 
caused problems in certain rare cases. 

Avoid other vehicles 
 
The previous two behaviors provide means for formation following and static object avoidance.  
Avoiding dynamic objects – i.e. other vehicles – is the last step.   As with driving to position, 
this is based on Reynolds’ steering behaviors.   
 
The idea is to predict where other vehicles will pass by the current vehicle in the future, based 
on current positions and velocities, and steer to avoid future collisions.  A full discussion can 
be found in [Reynolds] – in brief the algorithm is as follows: 
 

For all vehicles within a certain radius 
 Compute time of nearest approach  
 If less than minimum time 
  If the two vehicles collide at that time 
   Store minimum time and vehicle ID 

 
If there is a possible collision vehicle 

Turn left or right (sharply if directly in front, less if 
farther to the side) 

 Slow down (more if vehicle is closer, less if far away)  
   

Figure 9: drive-to velocity 
crosses obstacle 

Figure 8.4: goal in front, 
facing back Figure 8.3: goal behind, 

facing similar 



Certain modifications were made for our algorithm.  First, the velocity used for the current 
vehicle is the average of the current velocity and the desired steering velocity (as computed 
above).  This was found to be a better predictor for the future velocity of the vehicle.  
 
Second, Reynolds’ algorithm used spheres to detect collisions.  Since most of the vehicles are 
essentially rectilinear this was not granular enough and led to behaviors such as a vehicle 
steering to avoid one vehicle that it clearly will pass and not avoiding a second vehicle which is 
slightly behind the first.  Instead, spheres were used to cull out cases, and swept spheres (a 
cylinder capped by two half spheres) were used as the final determiner for possible collision. 
 
Third, if the drive-to point for the current vehicle is too close to the collision vehicle, the current 
vehicle stops.  This handles cases where two platoons have driven to nearly the same 
destination and are intertwined.  Otherwise, two vehicles may endlessly circle each other, 
trying to get to drive-to points that are very close together but also constantly avoiding each 
other. 
 

Fourth, if two vehicles are travelling at approximately the same 
speed and heading but slightly towards each other (see Figure 10), 
they will either constantly collide side-by-side (if the drive-to impetus 
is given more weight), or will avoid each other but never get to their 
destination (if the collision avoidance is given more weight).  Our 
solution is to check for the case and have the one on the right 
speed up slightly so the other can pass behind. 
 

Finally, the drive-to and collision avoidance velocities need to be combined into the final 
steering velocity.  This is done with the following formula 
 

t = (10.0f - minTime)/5.0f; 
if (t > 1.0f) 
 t = 1.0f; 
steering.x += (t*lateralAvoidance.x + forwardAvoidance.x); 
steering.y += (t*lateralAvoidance.y + forwardAvoidance.y); 

 
where steering is the original drive-to velocity, lateralAvoidance is avoiding left-right 
and forwardAvoidance is braking.  This produces the desired behavior where the vehicle 
will turn slightly at a distance but more and more as it approaches collision. 
 
One question may arise – why didn’t we have the platoons avoid each other as well?  This 
possibility came up, but was rejected because of narrow canyons and bridges in the game.  
One platoon could place itself in the middle of one of these narrow regions and block other 
platoons from passing.  Providing only vehicle avoidance allowed one platoon to pass through 
another one, and avoid such issues. 

6 Conclusions 

We have presented a system for high-level and low-level pathfinding, using visibility graphs, 
vector offsets for formations, and steering behaviors for vehicles.  The algorithms cover roads, 

Figure 10: special collision 
avoidance case 



bridges, swamps, formations, and natural vehicle movement in a physically-simulated 
environment.  While in general we are quite pleased with the results, there are some lessons 
to be learned, and things that we would definitely do differently the next time. 
 
Write a tool for testing pathfinding.   
 
Jon Owen created a tool for testing and maintaining the basic visibility graph algorithm.  
Without it, the process of creating the road-following and swamp-avoiding algorithms would 
have been prohibitively difficult.  As it was, the remaining parts of the algorithm were quite 
difficult to debug.  Code would be created, and tested with limited test cases, and then passed 
on to quality assurance to be further tested.  A 2D tool for all of the pathfinding would have 
been extremely useful and would have probably saved weeks of head scratching and 
keyboard-pounding. 
 
Early save game functionality is good.   
 
On the other hand, having save game functionality in early allowed the testers to provide lots 
of test cases, particularly instances where vehicles got stuck.  Without that the task would have 
been impossible.  As it was, save game was not maintained well and was under a constant 
state of repair.  If one individual had been responsible for it might have remained in better 
shape and provided even more data. 
 
Use visibility graphs for large-scale movement, A* for local pathfinding.   
 
Visibility graphs work well for moving objects long distances across a map which has two 
areas – places you can go, and places you can’t.  They are not so good for maps with rolling 
terrain where vehicles have variable speeds depending where they are.  A*, on the other hand, 
is good at such maps, but not so good for long distances.  One potential solution is to create a 
high-level visibility graph which covers those terrain features which are impassible, and then 
use A* to compute a new path along each edge in the visibility graph path, which takes 
advantage of the local terrain.  This may give the advantages of both algorithm – it may also 
be computationally too expensive.  Further examination of this technique may occur in later 
games. 
 
Better platoon-level pathfinding for helicopters.   
 
Ignoring variability in terrain was particularly noticeable with rotary wings.  In general they can 
go almost anywhere, but some places are better than other.  For example they will want to 
follow canyons and other low-lying terrain so as to avoid notice, but will also want to be able to 
briefly fly over a hill to a new area of terrain.  Marking some hilltops with swamps might have 
solved this problem in the Force 21 case, but again, a hybrid visibility graph and A* algorithm 
would probably have been better. 
 



Have platoons slow down slightly when passing obstacles. 
 
After shipping, some rare problems with vehicles getting lost or stuck were still noted when 
platoons pass by some buildings on certain levels.  This might have been handled better if the 
platoon slowed down to allow vehicles to carefully move around the buildings using the 
morphing formations instead of calculating their own paths.   
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