
The Future of Curved Surfaces – Summary

Moderator: Jim Van Verth, Red Storm Entertainment/Ubisoft, jimvv@redstorm.com

This roundtable examined the question of when and whether curved surfaces will be used
for modeling in computer games. Issues discussed at the sessions included artist tools for
curved surfaces, developing artist interest in curved surfaces, hardware support for
surfaces, rendering surfaces efficiently and managing collision detection. While session
attendance was small over the three days, the roundtable as a whole covered a variety of
topics.

The Future of Curved Surfaces – Report

Moderator: Jim Van Verth, Red Storm Entertainment/Ubisoft, jimvv@redstorm.com

Introduction:
This roundtable examined the question of when and whether curved surfaces will be used
for modeling in computer games. While curved surfaces have appeared in some games,
they are currently not accepted as universal technology, and so the world of gaming is a
very triangular place. However, this may change if hardware vendors and console
manufacturers finally deliver on the promise of hardware-accelerated curved surfaces.
While that day may not be imminent, it will come eventually. As with many other
technologies, it can be worthwhile to look ahead. This roundtable covered a variety of
issues with respect to curved surfaces in games.

Format:
The roundtable was broken into three sessions. The discussion topics were mostly open,
with some additional topics provided by the moderator to keep things moving along.
Most attendees were programmers, with experience varying from inexperienced people
who wanted to learn, to a people highly experienced in the topic. Most attendees seemed
lie in the middle. There were also some software and hardware vendors who were there
to gauge interest so they can plan better.

Attendance:
The first and third sessions had approximately 20 attendants, primarily all programmers.
The second session had approximately 15 attendants, with mostly programmers and one
artist. In each of the first two sessions about 5-7 people were active participants, whereas
in the last session nearly everyone participated.

Session 1:

- Adaptive Subdivision: After introductions, this was the first topic. Adaptive

subdivision converts a surface into triangles (or tessellates), with higher detail in
areas of greater curvature. It was discussed whether this was possible to achieve in a
vertex shader on standard PC hardware. The issue was raised that the vertex shader
only considers one vertex at a time, and neighbor information is needed for

tessellation. One pre-processing solution suggested was to use a texture lookup for
neighbor information. The biggest problem is avoiding cracking between the areas of
varying detail – the decisions along the boundary need to match. A flatness check
could be used to pre-determine the detail, but this is not dynamic and is not useful for
a level-of-detail system, where you would want low tessellation if the object is far
away. Full infinite regression may not be necessary – you need to spend your cycles
wisely.

- Collision Detection: The question “What are people doing about collision detection?”
was asked. The expert response was that it was difficult. One solution with NURBS
used binary search and was fudged a lot – trying to eliminate the binary search is key.
One possibility raised was using an approximation to collide with – but clearly if
there was a fast solution for the surface data that would be better. Parallelizing the
problem was also raised, but no one had a definitive solution. It’s possible to break
the surface into a hierarchy, but then you’re talking about a space-time trade-off.
Presumably you’re using a surface because it is a very compressed format, so adding
additional data for collision removes this advantage.

- Why No Curved Surfaces Yet: Lots of applications use them (movies, e.g.), why not
games? In general there are two issues: artists like to know what they’re going to get
on-screen, and engineers want to know what’s in it for them to implement it. A risk
assessment needs to be done to determine whether it’s worth taking the time to make
the change. Hardware support would help, particularly if there were some bandwidth
savings, but what surface type should be supported? Probably this will be driven by
Microsoft first and then the hardware manufacturers. Until then, one baby step could
be to use them as part of the production pipeline and then convert them to triangles
for use in the game. Alternatively it could be used for user-created content: easier to
create (maybe) and less bandwidth for network traffic.

- Creating Curved Surfaces: This led into a discussion of creating curved surfaces. The
main question was: What are the limitations? Are hard edges okay? Do you want to
model anything? Surfaces allow you to do the same thing with fewer points, but it’s
not always easier to create it. They are, however, good for facial animation. Another
possibility would be to use swept curves to represent a bottle, for example. One
attendee made an off-topic note that they tried patches on the Playstation VU, but
ended up with cracks; a big problem, as noted before.

- Direct Rasterization: The question was raised of whether it was possible to render the
surface directly, rather than tessellating into triangles. In this case you are solving a
polynomial directly and there can be floating point issues. The general conclusion
was that it was not a fruitful approach. Indeed, surfaces themselves may not be
fruitful as an in-game approach when you can do so much with polygons and a
displacement map.

Session 2:

- Impact on Art Pipeline: After a late start and introductions, this was the first topic.

The first point was that starting in the middle of production was the wrong approach.
You need to decide whether you are trying to use them for real-time in-game data,
just for pre-production, or elsewhere in the art pipeline. The motivation for real-time

is that they add curvature with high compression – which is also the motivation for
ATI’s TrueForm N-patches implementation. But this can’t just be used for rendering,
as the application needs to place all objects correctly so they don’t intersect – not just
on polygonal surfaces.

- Convincing Artists to Use Them: It was posited that what artists want are subdivision
surfaces with displacement maps, for characters in particular. However, doing this in
real-time is bad; again, cracking is an issue and the computations are expensive. The
motivations need to be compelling: it looks better, or triangles are not as efficient
when building, or it’s better for texture stretching.

- What would hardware implementation be? As Cell had been formally introduced the
day before, this was a hot topic. The problem is that surfaces are inherently recursive.
The Cell architecture might be possibly better than other architectures for this,
because you could subdivide on the Cell, and then send the result to the GPU for
rendering. Displacement maps in hardware are inherently easier, but for artists,
displacement may not be enough.

- Which types: Bezier, NURBS? At this point the discussion was winding down. The
general conclusion was that bi-cubic patches are best for terrain and not so much for
characters. Subdivision surfaces would probably be better for characters.

- What is the future of curved surfaces? As one of the primary foci of the discussion
was creating curved surfaces for characters, aiming for movie-quality characters is
clearly a primary goal. Beyond that there didn’t seem to be a driving need; polygons
and displacement maps might be enough, particular since the problems with curved
surfaces are so great right now.

Friday

- Current State of Support: After the introductions, one attendee wanted to know what

the current state of curved surfaces was. Rhino is one modeling package that
supports NURBS, but it may not have real-time support and the high-end consumers
are driving its features. ATI’s N-patches were mentioned, as well as the PSP. Curves
can also be faked with displacement mapping, which can be created with Z-Brush or
3DMax’s Claybrush. In general, curved surfaces are good for organics.

- Curve fitting: After this, there was some discussion of whether tools could be created
to fit a curve to a high-res model (much as displacement/normal maps modify a low-
res model). This could be good for managing silhouettes better, and for LOD.
However, cracking still needs to be managed. The technology to convert exists –
curve fitting as a science is relatively understood. However, it’s not so good for flat
areas and hard edges. They have to be adaptive to the underlying continuity. But one
argument for curve fitters is that they could be used as a more intuitive method for
modeling, as NURBS can be unintuitive.

- Support: Ideally GPU support would be needed. Support may exist at the high-end
(Boeing), but it needs to trickle down to PCs. It might be possible to handle it with
highly programmable shaders. It might also be desirable: If only a fixed hardware
implementation were provided it might not be the one you want. One note: GPUs are
so programmable these days using the term hardware may be a misnomer. But
ultimately the chipset controls what you can do, e.g. CISC vs. RISC. Ray tracing

theoretically makes it easier to render curves, but it really requires a “processor” per-
pixel, with a deep pipeline.

- Collision: One possible motivation for curved surfaces is using them for collision;
one could use tools to create displacement maps for rendering and curves for
collision. The one flaw in this is that it’s difficult to manage collision with curves.
Possibly you could reuse tessellation from the rendering process, or vice versa.
However, extruding NURBS for time-of-impact calculations could get messy. Might
be better to think of a swept sphere vs. NURBS terrain – however it’s unclear how
difficult this is.

- Motivation: Other motivations exist for curve surfaces. One possibility is to use
curved surfaces for navigation areas in natural environments instead of navigation
meshes. The main values of curves are that they have a compact description and have
variable scale (you can zoom in). The compressed format helps one manage
bandwidth. Some already discussed disadvantages are collision detection and highly
discontinuous objects (hard edges).

- Convincing Artists: It comes down to tools. Z-Brush provides a lot of functionality;
you can do a lot with normal mapping or displacement. Artists want to use the right
tools, whether pre-built or custom construction. One previously mentioned package
is Rhino, which is still available. One thing that could help is a new metaphor for
building curves, for example, a haptic interface for virtual sculpting.

- The future: Curves do provide flexibility in options. Right now triangles are the main
force, but other options are coming. However, one conclusion is that they don’t have
much of a future. Instead, tools might be directed towards smoothing low-res
meshes, and rendering technology directed towards atmospheric effects. NURBS are
used in movies because they’re highly scalable, and even then not everyone does that
because they want better photo-realism. Hair implementations began as NURBS and
are now tending towards polygons (e.g. Maya). The best one might hope for is a
mixed world of organic curves and non-organic polygons: trees in cities.

