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Overview
● Our goal: 
● represent data in sparsest way possible
● good for compression
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Overview
● Part of a series
● Green & Ko, “Frames, Sparsity and New Math for 
Games”
● Green & Ko, “Orthogonal Matching Pursuit and 
K-SVD for Sparse Encoding”
● Ko, “Dictionary Learning in Games”
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Overview
● Basis vectors
● Frames
● K-SVD
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Basis vectors
● Have vector

Text y
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What’s a compact way of representing this?



Basis vectors
● Can represent as linear combination

Text y
d0

d1
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Let’s fix two vectors in space and define the vector relative to them. I’ll talk in a bit how to pick these vectors.



● Can represent as linear combination

x1d1

x0d0

Basis vectors

Text y

y = x0d0 +x1d1

d0

d1
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A linear combination is just a weighted sum of vectors.



● Can represent as linear combination

● Alternatively

Basis vectors

Text

.= d1d0
x0

x1

y

x1d1

x0d0

y
d0

d1
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Alternatively we can represent this as a matrix multiplication, where the matrix has d0 and d1 as column vectors, we 
multiply by the vector x0, x1, and get y. We’ll see this again in another form later.



● Can represent as linear combination

● Alternatively

Basis vectors

Text
x1d1

x0d0

y
d0

d1

y = Dx
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Or in matrix notation:



Basis vectors
● If:
● can represent any vector with set (spans)
● non-redundantly (linearly independent)

● called a basis.
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A basis has two main properties: you have to be able to create any vector in your space with a linear combination 
(called spanning the space), and there can’t be any redundant vectors (called linearly independent). The end result is 
that there is one and only one way to represent a vector using a linear combination of the basis vectors.



Basis vectors
● If:
● can represent any vector with set (spans)
● non-redundantly (linearly independent)

● called a basis. If unit length & orthogonal, 
orthonormal basis (ONB)
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● Given a basis

● Represent any vector as (x0, x1)
●(called coefficients)

Basis vectors

Text
x1d1

x0d0

y
d0

d1
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And since there’s one and only one way to represent the vector, we can set the basis vectors as fixed, and store only 
the coefficients. This gives us our compact form



Basis vectors
● If ONB, get coefficients via projection

Text y
d0

d1

x1

x0

x0 =
< d0,y >

kd0k
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● If non-orthogonal

Basis vectors

Text y
d0

d1

x = D

�1
y
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In general, on a computer we don’t want to invert the matrix due to numerical errors -- rather we’d solve a linear 
system. But mathematically this is correct.



● Given a basis

● Represent any vector as coefficients

Basis vectors

Text
x1d1

x0d0

y
d0

d1
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So to sum this up:



● Given a basis

● Represent any vector as coefficients
● Can do the same for signals

Basis vectors

Text
x1d1

x0d0

y
d0

d1
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Basis vectors
● Suppose we have a sampled signal
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In a game, this could be audio data, or the red component of a scanline in an image, or it could be rotation around y 
for an animated joint. This is clearly not a sparse representation -- there are a lot of different values here, and no 
zeroes.



Basis vectors
● Could represent as weighted sum of set of 
signals
● Dictionary: set of signals used 
● Atom: element of the dictionary
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We’ll start off by assuming our dictionary is a basis, though as we’ll see that doesn’t have to be the case.



Basis vectors
● Real Fourier series

● This is our dictionary

1

2

a0 +

NX

n=1

an cos(nx) +

NX

n=1

bn sin(nx)
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One possibility is to use the Fourier basis, which in the discrete case and using real coefficients, looks like this.



Basis vectors

 +1.0

+ 0.5

+ 0.3 + 0.0 ...+ 0.0+ 0.0

+ 0.0 + 0.0 + 0.0 + 0.0 ...

0.0 =
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Here is a portion of discrete Fourier basis, with its constant term, and various sines and cosines. The terms to the 
right are all scaled by 0, so I haven’t shown them. As you can see, a large number of the terms are multiplied by zero, 
so our data is sparse, and should compress quite well.



Basis vectors

 +0.1

+ 0.0

+ 0.0 + 0.0 ...+ 0.0+ 0.25

+ 0.9 + 0.0 + 0.0 + 0.0 ...

0.0 =
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And we can represent a wide variety of signals simply by changing the weights.



Basis vectors
● Other bases: 
●Discrete cosine basis
●Wavelets
●Good for sampled/spiky data

● All orthonormal bases:
●Easy to project
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Problems with Fourier: we repeat the signal to make it periodic, which most of the time introduces a discontinuity. 
And Fourier is not good at representing discontinuities. Also, the general Fourier series uses complex coefficients. 
For this reason, most people use discrete cosine transform, which mirrors the signal to remove the edge 
discontinuity, and has real coefficients. But the problem with discontinuities in general is still there. For those types 
of signals, people use wavelets.

In all these cases, if scaled properly, they’re all orthonormal bases. 



Basis vectors
● Problem:
● ONBs not always sparse
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Basis vectors
● In general, need all coefficients for ONB

● Bad for compression algorithms
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Suppose we’d like to drop coefficients to reduce our signal, i.e. to compress this set of vectors. Using the standard 
orthonormal basis, we can’t just drop one coefficient for each vector without losing a significant amount of 
information. In the case of the 2D vector, it’s not so bad as it’s only two values -- but suppose we have a signal with 
a significant number of samples. If we have to represent it using the same or close to the number of coefficients 
relative to one of our orthonormal bases, then we’re not gaining anything. Instead, it would be great if we could 
significantly reduce the number of coefficients needed without huge errors.



Frames
● Solution: add vectors to create a frame
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Instead, we can add more vectors. A frame is an overspecified basis -- we have more vectors than we need to span 
the space of all vectors. But it has the advantage that we can pick the vectors we need for a given data element to get 
a decent compression. In this case we can now use only one value per input vector. Note that our goal may not be 
exact reproduction: lossy compression is okay. 



Frames
● Frame vectors ek must fulfill frame condition

● where

0 < A  B <1

8v : Akvk2 
X

k

| < v, ek > |2  Bkvk2
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Basically this means that for every v in our space, the projections onto the frame are bounded, and that the frame 
vectors can be used to represent the entire space we care about. I wouldn’t worry too much about it, other than you 
can’t just pick any old vectors and get a frame. We’ll talk later about methods for picking frame vectors for a given 
data set later. That said, it’s still useful to keep them unit length.



Frames
● Can do the same for signals
● E.g. use dictionary of DCT and wavelets to 
cover both smooth and chunky data
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Frames
● Given vector and dictionary
● Want minimal set of atoms. How?
● Least squares (sloooooooowwwwww)
● Greedy algorithms
● Matching pursuit
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The problem with a frame is that now we have an infinite number of possibilities for our coefficients. How do we pick 
the ones we want?



Matching Pursuit
● Method for finding coefficients for v and 
given dictionary
● Project v onto all atoms in dictionary
● Take greatest magnitude projection
● Subtract scaled atom from v
● Repeat until v is sufficiently small, or certain # 
iterations
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Matching Pursuit

Di
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Let’s run through an example using 2D vectors. Here the black vectors are our dictionary, and the green vector is the 
one we’re compressing. The box is the active set of atoms we’re using to represent our original vector.



Matching Pursuit

Di
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We begin by projecting onto each of the atoms



Matching Pursuit

Di
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Matching Pursuit

Di
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Matching Pursuit

Di
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Matching Pursuit

Di
1.3
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So now we pick the atom with the largest projection and add it to our set, along with the coefficient



Matching Pursuit

Di
1.3
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Then we subtract the portion of the residual pointing along the chosen atom...



Matching Pursuit

Di
1.3
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... to get our new residual. At this point we might decide that our error is small enough, or we might continue. Let’s 
continue.



Matching Pursuit

Di
1.3
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Projecting on all the dictionary again, we see that the longest projection is on the vector pointing up, so we add that 
to our active set...



Matching Pursuit

Di
1.3

0.2
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And after subtracting the new atom scaled by the new coefficient,



Matching Pursuit

Di
1.3

0.2
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we’ll end up with the set of atoms that can represent our original vector. For lossy compression, we could drop the 
0.2 term.



Matching Pursuit
● Will converge to solution, but: 
● Can oscillate between a small set of atoms
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Matching Pursuit
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Let’s try another example, but with only two frame vectors. This is ultimately silly because this is a basis, and we 
could just invert a matrix to solve it, but it does a good job of illustrating the problem.



Matching Pursuit
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So, project and find the largest projection



Matching Pursuit
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Subtract projected portion...



Matching Pursuit
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... to get new residual



Matching Pursuit
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Find max projection again



Matching Pursuit
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Subtract projected portion



Matching Pursuit
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To get new residual. Note that this is pointing the same direction as the original vector, just shorter. 



Matching Pursuit
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We project again...



Matching Pursuit
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Subtract the scaled atom



Matching Pursuit
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To get the new residual



Matching Pursuit
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We project again...



Matching Pursuit
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And subtract...



Matching Pursuit
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And here we are again, just shorter. So we’re just going to keep oscillating between these two vectors.



Orthogonal Matching Pursuit
● Refinement of MP
● Update all coefficients computed so far by 
reprojecting onto current set of atoms, before 
subtracting
● Better results
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Orthogonal Matching Pursuit
● Reprojection step
● Ideally do

x = D

�1
i y
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Orthogonal Matching Pursuit
● Reprojection step
● Ideally do

Not square
x = D

�1
i y
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Orthogonal Matching Pursuit
● Reprojection step
● Ideally do

● Instead:

Not square

(pseudo-inverse)x = (DT
i Di)

�1
D

T
i y

x = D

�1
i y
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One note on the pseudo-inverse -- doing it directly is not stable (floating point error), so need to use Cholesky 
decomposition. See Robin and Manny’s talk from last year for more details on this.



Orthogonal Matching Pursuit

Di
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So let’s try that again



Orthogonal Matching Pursuit

Di
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Project and find the largest projection



Orthogonal Matching Pursuit

Di
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Add that to our current set of atoms



Orthogonal Matching Pursuit

Di
0.7
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The we reproject the original vector against the single atom in our current set to get our coefficient



Orthogonal Matching Pursuit

Di
0.7
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Subtract projected portion to get new residual



Orthogonal Matching Pursuit

Di
0.7
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Find max projection again



Orthogonal Matching Pursuit

Di
0.7

Saturday, March 22, 14

And add that atom to our current set



Orthogonal Matching Pursuit

Di
0.7
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At this point, these are the two atoms in our active set. So we reproject the original vector against these to update 
the coefficients...



Orthogonal Matching Pursuit

Di
1.5

-1.0
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To get something like this. Then we subtract the scaled atoms from the original vector to get the new residual....



Orthogonal Matching Pursuit

Di
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Which is negligible, so we’re done.



Orthogonal Matching Pursuit
● Reprojection step takes extra time
● But converges much quicker!
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Choosing a Dictionary
● Can just pick one
● E.g. DCT + wavelets
● Refine from training set of data
● K-SVD
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● Can represent signal rep. as matrix mult.

● Error is 

K-SVD

.

D x y

⇡

ky �Dxk2
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Here y is our original signal, D is our dictionary, and x are the coefficients.



● Can extend to many signals

● Error is               (matrix norm) 

K-SVD

.

D X Y

kY �DXk2

...

...⇡
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Here each row in X represents all the coefficients corresponding to a particular atom in D, across all our training 
signals, and Y is the training set of signals.



● Idea: iteratively minimize error per atom

● Error is

K-SVD

.

D X Y...

...⇡
dk

x

k
T

kY �DXk2
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● Idea: iteratively minimize error per atom

● Error is

dk

K-SVD

.

D X Y...

...⇡
x

k
T

kY �DXk2
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● Idea: iteratively minimize error per atom

● Error is

dk

K-SVD

.

D X Y...

...

kY �DXk2 = k(Y �
X

j 6=k

djx
j
T )� dkx

k
T k2 = kEk � dkx

k
T k2

⇡
x

k
T
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We can rewrite our error, pulling out the terms corresponding to the atom we’re trying to minimize, and recombining 
the rest to get an error term E_k.



● Idea: iteratively minimize error per atom

● Error is

K-SVD

.

D X Y

⇡
...

...

kY �DXk2 = k(Y �
X

j 6=k

djx
j
T )� dkx

k
T k2 = kEk � dkx

k
T k2

Minimize

dk

x

k
T
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K-SVD
● How to minimize               ?
● Idea: 
● decompose     
● use to create new     and   

kEk � dkx
k
T k2

Ek

dk x

k
T
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K-SVD
● Decompose      using SVD 

●U, V orthogonal
●W diagonal, large to small magnitude
● Problem: need vectors

Ek

Ek = UWVT
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It’s not clear how this helps us: U, W and V are all matrices. 



K-SVD
● Decompose      using SVD 

●U, V orthogonal
●W diagonal, large to small magnitude
● Problem: need vectors

Ek

Ek = UWVT
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The key is this property of W



K-SVD
● Decompose      using SVD 

●U, V orthogonal
●W diagonal, large to small magnitude
● Contributes the most to    : 

Ek

Ek = UWVT

Ek

u0w00v
0
T
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So the upper leftmost element of W is the largest in magnitude. And since W is diagonal, we only end up multiplying 
that element by the first column in U and the first row in V^T. This product will end up being the largest contribution 
to E_k, so we’ll use that to generate our new d and x values. This is called a rank-1 approximation.



K-SVD
● How to minimize               ?
● Decompose      using SVD 

● Use decomposition to minimize

kEk � dkx
k
T k2

Ek

Ek = UWVT

d̃k = u0

x̃

k
T = w00v

0
T
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K-SVD
Iterate until desired error level reached:

1. Compute X coefficients for Y via OMP   
2. For each column of D/row of X

a. compute
b. decompose     using SVD
c.     becomes
d.      becomes  
 Text

Ek

Ek

dk

x

k
T w00v

0
T

u0
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● One wrinkle: doesn’t converge well 
● Solution: collapse     to non-zero entries 
and collapse     to corresponding columns

●Converges much better  

Ek

K-SVD

-
...

...

x

k
T

x

k
T

dk

Ek
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K-SVD
Iterate until desired error level reached:

1. Compute X coefficients for Y via OMP   
2. For each column of D/row of X

a. using only non-zero entries of    , compute
b. decompose     using SVD
c.     becomes
d.      becomes Text

Ek

Ek

dk

x

k
T w00v

0
T

u0

x

k
T
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Summary
● For compression, can use more than ONB
● Use dictionary to get sparse coding
● Use pursuit algorithm to determine coeffs
● Use K-SVD to tailor dictionary to data
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The last is a good overall article about using dictionaries for representing signals, and covers a lot more options than 
presented here. Two of the authors were also the creators of K-SVD.



Contact Info
● jim@essentialmath.com
● Google+: +JimVanVerth 
● Twitter: @cthulhim
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