# Intro to Frames, Dictionaries and K-SVD 

Jim Van Verth
Software Engineer, Google
Manny Ko
Principal Engineer, Activision R\&D

## Overview

- Our goal:
- represent data in sparsest way possible
- good for compression


## Overview

- Part of a series
- Green \& Ko, "Frames, Sparsity and New Math for Games"
- Green \& Ko, "Orthogonal Matching Pursuit and K-SVD for Sparse Encoding"
- Ko, "Dictionary Learning in Games"


## Overview

- Basis vectors
- Frames
- K-SVD


## Basis vectors

- Have vector


## Basis vectors

- Can represent as linear combination



## Basis vectors

- Can represent as linear combination


$$
\mathbf{y}=x_{0} \mathbf{d}_{0}+x_{1} \mathbf{d}_{1}
$$

## Basis vectors

－Can represent as linear combination

－Alternatively
四=囯圆

## Basis vectors

- Can represent as linear combination

- Alternatively

$$
\mathbf{y}=\mathbf{D x}
$$

## Basis vectors

- If:
- can represent any vector with set (spans)
- non-redundantly (linearly independent)

- called a basis.

A basis has two main properties: you have to be able to create any vector in your space with a linear combination (called spanning the space), and there can't be any redundant vectors (called linearly independent). The end result is that there is one and only one way to represent a vector using a linear combination of the basis vectors.

## Basis vectors

- If:
- can represent any vector with set (spans)
- non-redundantly (linearly independent)

- called a basis. If unit length \& orthogonal, orthonormal basis (ONB)


## Basis vectors

- Given a basis

- Represent any vector as ( $x_{0}, x_{1}$ )
-(called coefficients)


## Basis vectors

- If ONB, get coefficients via projection


$$
x_{0}=\frac{<\mathbf{d}_{\mathbf{0}}, \mathbf{y}>}{\left\|\mathbf{d}_{\mathbf{0}}\right\|}
$$

## Basis vectors

- If non-orthogonal


$$
\mathbf{x}=\mathbf{D}^{-1} \mathbf{y}
$$

## Basis vectors

- Given a basis

- Represent any vector as coefficients


## Basis vectors

- Given a basis

- Represent any vector as coefficients
- Can do the same for signals


## Basis vectors

- Suppose we have a sampled signal



## Basis vectors

- Could represent as weighted sum of set of signals
- Dictionary: set of signals used
- Atom: element of the dictionary


## Basis vectors

- Real Fourier series

$$
\frac{1}{2} a_{0}+\sum_{n=1}^{N} a_{n} \cos (n x)+\sum_{n=1}^{N} b_{n} \sin (n x)
$$

- This is our dictionary


## Basis vectors



## Basis vectors



## Basis vectors

- Other bases:
-Discrete cosine basis
- Wavelets
-Good for sampled/spiky data

- All orthonormal bases:
-Easy to project


## Basis vectors

- Problem:
- ONBs not always sparse


## Basis vectors

- In general, need all coefficients for ONB

- Bad for compression algorithms


## Frames

- Solution: add vectors to create a frame



## Frames

- Frame vectors $\mathbf{e}_{k}$ must fulfill frame condition

$$
\forall \mathbf{v}: A\|\mathbf{v}\|^{2} \leq \sum_{k}\left|<\mathbf{v}, \mathbf{e}_{k}>\right|^{2} \leq B\|\mathbf{v}\|^{2}
$$

- where

$$
0<A \leq B<\infty
$$

## Frames

- Can do the same for signals
- E.g. use dictionary of DCT and wavelets to cover both smooth and chunky data


## Frames

- Given vector and dictionary
- Want minimal set of atoms. How?
- Least squares (sloooooooowwwwww)
- Greedy algorithms
- Matching pursuit

The problem with a frame is that now we have an infinite number of possibilities for our coefficients. How do we pick the ones we want?

## Matching Pursuit

- Method for finding coefficients for $\mathbf{v}$ and given dictionary
- Project v onto all atoms in dictionary
- Take greatest magnitude projection
- Subtract scaled atom from $\mathbf{v}$
- Repeat until $\mathbf{v}$ is sufficiently small, or certain \# iterations


## Matching Pursuit



## $\mathbf{D}_{i}$



## Matching Pursuit



## $\mathbf{D}_{i}$

## Matching Pursuit



## $\mathbf{D}_{i}$

## Matching Pursuit



## $\mathbf{D}_{i}$

## Matching Pursuit



## $\mathbf{D}_{i}$

## Matching Pursuit



## $\mathbf{D}_{i}$

1.3

So now we pick the atom with the largest projection and add it to our set, along with the coefficient

## Matching Pursuit



## $\mathbf{D}_{i}$

1.3

Then we subtract the portion of the residual pointing along the chosen atom...

## Matching Pursuit



## $\mathbf{D}_{i}$

1.3
... to get our new residual. At this point we might decide that our error is small enough, or we might continue. Let's continue.

## Matching Pursuit



## $\mathbf{D}_{i}$

1.3

Projecting on all the dictionary again, we see that the longest projection is on the vector pointing up, so we add that to our active set...

## Matching Pursuit



## $\mathbf{D}_{i}$

1.3
0.2

## Matching Pursuit



## $\mathbf{D}_{i}$

1.3
0.2

## Matching Pursuit

- Will converge to solution, but:
- Can oscillate between a small set of atoms


## Matching Pursuit



## Matching Pursuit

## Matching Pursuit

## Matching Pursuit



## Matching Pursuit



## Matching Pursuit



## Matching Pursuit



To get new residual. Note that this is pointing the same direction as the original vector, just shorter.

## Matching Pursuit

## Matching Pursuit

## Matching Pursuit

To get the new residual

## Matching Pursuit

## Matching Pursuit



## Matching Pursuit



## Orthogonal Matching Pursuit

- Refinement of MP
- Update all coefficients computed so far by reprojecting onto current set of atoms, before subtracting
- Better results


## Orthogonal Matching Pursuit

- Reprojection step
- Ideally do

$$
\mathbf{x}=\mathbf{D}_{i}^{-1} \mathbf{y}
$$

## Orthogonal Matching Pursuit

- Reprojection step
- Ideally do
$\mathbf{x}=\underbrace{\mathbf{D}_{i}^{-1}}_{\text {Not square }} \mathbf{y}$


## Orthogonal Matching Pursuit

- Reprojection step
- Ideally do

$$
\mathbf{x}=\underset{\mathbf{D}_{i}^{-}}{ }{ }^{1} \mathbf{y} \text { Not square }
$$

- Instead:

$$
\mathbf{x}=\left(\mathbf{D}_{i}^{T} \mathbf{D}_{i}\right)^{-1} \mathbf{D}_{i}^{T} \mathbf{y} \quad \text { (pseudo-inverse) }
$$

## Orthogonal Matching Pursuit


$\mathbf{D}_{i}$

So let's try that again

## Orthogonal Matching Pursuit


$\mathbf{D}_{i}$

Project and find the largest projection

## Orthogonal Matching Pursuit


$\mathbf{D}_{i}$

## Orthogonal Matching Pursuit


$\mathbf{D}_{i}$
0.7

The we reproject the original vector against the single atom in our current set to get our coefficient

## Orthogonal Matching Pursuit


$\mathbf{D}_{i}$
0.7

## Orthogonal Matching Pursuit


$\mathbf{D}_{i}$
0.7

Find max projection again

## Orthogonal Matching Pursuit



## Orthogonal Matching Pursuit


$\mathbf{D}_{i}$


At this point, these are the two atoms in our active set. So we reproject the original vector against these to update the coefficients...

## Orthogonal Matching Pursuit



To get something like this. Then we subtract the scaled atoms from the original vector to get the new residual....

## Orthogonal Matching Pursuit



## $\mathbf{D}_{i}$

## Orthogonal Matching Pursuit

- Reprojection step takes extra time
- But converges much quicker!


## Choosing a Dictionary

- Can just pick one
- E.g. DCT + wavelets
- Refine from training set of data
- K-SVD


## K-SVD

- Can represent signal rep. as matrix mult.

- Error is $\|\mathbf{y}-\mathbf{D x}\|^{2}$


## K-SVD

- Can extend to many signals

- Error is $\|\mathbf{Y}-\mathbf{D X}\|^{2} \quad$ (matrix norm)

Here each row in X represents all the coefficients corresponding to a particular atom in D , across all our training signals, and $Y$ is the training set of signals.

## K-SVD

- Idea: iteratively minimize error per atom

- Error is $\|\mathbf{Y}-\mathbf{D X}\|^{2}$


## K-SVD

- Idea: iteratively minimize error per atom

- Error is $\|\mathbf{Y}-\mathbf{D X}\|^{2}$


## K-SVD

- Idea: iteratively minimize error per atom

- Error is $\|\mathbf{Y}-\mathbf{D X}\|^{2}=\left\|\left(\mathbf{Y}-\sum_{j \neq k} d_{j} x_{T}^{j}\right)-d_{k} x_{T}^{k}\right\|^{2}=\left\|\mathbf{E}_{k}-d_{k} x_{T}^{k}\right\|^{2}$


## K-SVD

- Idea: iteratively minimize error per atom

- Erroris is $\|\mathbf{Y}-\mathbf{D X}\|^{2}=\left\|\left(\mathbf{Y}-\sum_{j \neq k} d_{j} x_{T}^{j}\right)-d_{k} x_{T}^{k}\right\|^{2}=\left\|\mathbf{E}_{k}-d_{k} x_{T}^{k}\right\|^{2}$


## K-SVD

- How to minimize $\left\|\mathbf{E}_{k}-d_{k} x_{T}^{k}\right\|^{2}$ ?
- Idea:
- decompose $\mathbf{E}_{k}$
- use to create new $\mathbf{d}_{k}$ and $\mathbf{x}_{T}^{k}$


## K-SVD

- Decompose $\mathbf{E}_{k}$ using SVD

$$
\mathbf{E}_{k}=\mathbf{U} \mathbf{W} \mathbf{V}^{T}
$$

-U, V orthogonal
-W diagonal, large to small magnitude

- Problem: need vectors

It's not clear how this helps us: $\mathrm{U}, \mathrm{W}$ and V are all matrices.

## K-SVD

- Decompose $\mathbf{E}_{k}$ using SVD

$$
\mathbf{E}_{k}=\mathbf{U} \mathbf{W} \mathbf{V}^{T}
$$

- U, V orthogonal
-W diagonal, large to small magnitude
- Problem: need vectors


## K-SVD

- Decompose $\mathbf{E}_{k}$ using SVD

$$
\mathbf{E}_{k}=\mathbf{U} \mathbf{W} \mathbf{V}^{T}
$$

-U, V orthogonal
-W diagonal, large to small magnitude

- Contributes the most to $\mathbf{E}_{k}$ :

$$
\mathbf{u}_{0} w_{00} \mathbf{v}_{T}^{0}
$$

## K-SVD

- How to minimize $\left\|\mathbf{E}_{k}-d_{k} x_{T}^{k}\right\|^{2}$ ?
- Decompose $\mathbf{E}_{k}$ using SVD

$$
\mathbf{E}_{k}=\mathbf{U} \mathbf{W} \mathbf{V}^{T}
$$

- Use decomposition to minimize

$$
\begin{aligned}
\tilde{\mathbf{d}}_{k} & =\mathbf{u}_{0} \\
\tilde{\mathbf{x}}_{T}^{k} & =w_{00} \mathbf{v}_{T}^{0}
\end{aligned}
$$

## K-SVD

Iterate until desired error level reached:

1. Compute $X$ coefficients for $Y$ via OMP
2. For each column of $D /$ row of $X$
a. compute $\mathbf{E}_{k}$
b. decompose $\mathbf{E}_{k}$ using SVD
c. $\mathbf{d}_{k}$ becomes $\mathbf{u}_{0}$
d. $\mathbf{x}_{T}^{k}$ becomes $w_{00} \mathbf{v}_{T}^{0}$

## K-SVD

- One wrinkle: doesn't converge well
- Solution: collapse $\mathbf{x}_{T}^{k}$ to non-zero entries and collapse $\mathbf{E}_{k}$ to corresponding columns

-Converges much better


## K-SVD

Iterate until desired error level reached:

1. Compute $X$ coefficients for $Y$ via OMP
2. For each column of $D /$ row of $X$
a. using only non-zero entries of $\mathbf{x}_{T}^{k}$, compute $\mathbf{E}_{k}$
b. decompose $\mathbf{E}_{k}$ using SVD
c. $\mathbf{d}_{k}$ becomes $\mathbf{u}_{0}$
d. $\mathbf{x}_{T}^{k}$ becomes $w_{00} \mathbf{v}_{T}^{0}$

## Summary

- For compression, can use more than ONB
- Use dictionary to get sparse coding
- Use pursuit algorithm to determine coeffs
- Use K-SVD to tailor dictionary to data


## References

- Green \& Ko, "Frames, Sparsity and New Math for Games"
- Green \& Ko, "Orthogonal Matching Pursuit and K-SVD for Sparse Encoding"
- Ko, "Dictionary Learning in Games"
- Rubenstein, Bruckstein, and Elad, "Dictionaries for Sparse Representation Modeling"


## Contact Info

- jim@essentialmath.com
- Google+: +JimVanVerth
- Twitter: @cthulhim

