
Jim Van Verth
Software Engineer, Google
Manny Ko
Principal Engineer, Activision R&D

Intro to Frames,
Dictionaries and K-SVD

Saturday, March 22, 14

Overview
● Our goal:
● represent data in sparsest way possible
● good for compression

Saturday, March 22, 14

Overview
● Part of a series
● Green & Ko, “Frames, Sparsity and New Math for
Games”
● Green & Ko, “Orthogonal Matching Pursuit and
K-SVD for Sparse Encoding”
● Ko, “Dictionary Learning in Games”

Saturday, March 22, 14

Overview
● Basis vectors
● Frames
● K-SVD

Saturday, March 22, 14

Basis vectors
● Have vector

Text y

Saturday, March 22, 14

What’s a compact way of representing this?

Basis vectors
● Can represent as linear combination

Text y
d0

d1

Saturday, March 22, 14

Let’s fix two vectors in space and define the vector relative to them. I’ll talk in a bit how to pick these vectors.

● Can represent as linear combination

x1d1

x0d0

Basis vectors

Text y

y = x0d0 +x1d1

d0

d1

Saturday, March 22, 14

A linear combination is just a weighted sum of vectors.

● Can represent as linear combination

● Alternatively

Basis vectors

Text

.= d1d0
x0

x1

y

x1d1

x0d0

y
d0

d1

Saturday, March 22, 14

Alternatively we can represent this as a matrix multiplication, where the matrix has d0 and d1 as column vectors, we
multiply by the vector x0, x1, and get y. We’ll see this again in another form later.

● Can represent as linear combination

● Alternatively

Basis vectors

Text
x1d1

x0d0

y
d0

d1

y = Dx

Saturday, March 22, 14

Or in matrix notation:

Basis vectors
● If:
● can represent any vector with set (spans)
● non-redundantly (linearly independent)

● called a basis.

Saturday, March 22, 14

A basis has two main properties: you have to be able to create any vector in your space with a linear combination
(called spanning the space), and there can’t be any redundant vectors (called linearly independent). The end result is
that there is one and only one way to represent a vector using a linear combination of the basis vectors.

Basis vectors
● If:
● can represent any vector with set (spans)
● non-redundantly (linearly independent)

● called a basis. If unit length & orthogonal,
orthonormal basis (ONB)

Saturday, March 22, 14

● Given a basis

● Represent any vector as (x0, x1)
●(called coefficients)

Basis vectors

Text
x1d1

x0d0

y
d0

d1

Saturday, March 22, 14

And since there’s one and only one way to represent the vector, we can set the basis vectors as fixed, and store only
the coefficients. This gives us our compact form

Basis vectors
● If ONB, get coefficients via projection

Text y
d0

d1

x1

x0

x0 =
< d0,y >

kd0k

Saturday, March 22, 14

● If non-orthogonal

Basis vectors

Text y
d0

d1

x = D

�1
y

Saturday, March 22, 14

In general, on a computer we don’t want to invert the matrix due to numerical errors -- rather we’d solve a linear
system. But mathematically this is correct.

● Given a basis

● Represent any vector as coefficients

Basis vectors

Text
x1d1

x0d0

y
d0

d1

Saturday, March 22, 14

So to sum this up:

● Given a basis

● Represent any vector as coefficients
● Can do the same for signals

Basis vectors

Text
x1d1

x0d0

y
d0

d1

Saturday, March 22, 14

Basis vectors
● Suppose we have a sampled signal

Saturday, March 22, 14

In a game, this could be audio data, or the red component of a scanline in an image, or it could be rotation around y
for an animated joint. This is clearly not a sparse representation -- there are a lot of different values here, and no
zeroes.

Basis vectors
● Could represent as weighted sum of set of
signals
● Dictionary: set of signals used
● Atom: element of the dictionary

Saturday, March 22, 14

We’ll start off by assuming our dictionary is a basis, though as we’ll see that doesn’t have to be the case.

Basis vectors
● Real Fourier series

● This is our dictionary

1

2

a0 +

NX

n=1

an cos(nx) +

NX

n=1

bn sin(nx)

Saturday, March 22, 14

One possibility is to use the Fourier basis, which in the discrete case and using real coefficients, looks like this.

Basis vectors

 +1.0

+ 0.5

+ 0.3 + 0.0 ...+ 0.0+ 0.0

+ 0.0 + 0.0 + 0.0 + 0.0 ...

0.0 =

Saturday, March 22, 14

Here is a portion of discrete Fourier basis, with its constant term, and various sines and cosines. The terms to the
right are all scaled by 0, so I haven’t shown them. As you can see, a large number of the terms are multiplied by zero,
so our data is sparse, and should compress quite well.

Basis vectors

 +0.1

+ 0.0

+ 0.0 + 0.0 ...+ 0.0+ 0.25

+ 0.9 + 0.0 + 0.0 + 0.0 ...

0.0 =

Saturday, March 22, 14

And we can represent a wide variety of signals simply by changing the weights.

Basis vectors
● Other bases:
●Discrete cosine basis
●Wavelets
●Good for sampled/spiky data

● All orthonormal bases:
●Easy to project

Saturday, March 22, 14

Problems with Fourier: we repeat the signal to make it periodic, which most of the time introduces a discontinuity.
And Fourier is not good at representing discontinuities. Also, the general Fourier series uses complex coefficients.
For this reason, most people use discrete cosine transform, which mirrors the signal to remove the edge
discontinuity, and has real coefficients. But the problem with discontinuities in general is still there. For those types
of signals, people use wavelets.

In all these cases, if scaled properly, they’re all orthonormal bases.

Basis vectors
● Problem:
● ONBs not always sparse

Saturday, March 22, 14

Basis vectors
● In general, need all coefficients for ONB

● Bad for compression algorithms

Saturday, March 22, 14

Suppose we’d like to drop coefficients to reduce our signal, i.e. to compress this set of vectors. Using the standard
orthonormal basis, we can’t just drop one coefficient for each vector without losing a significant amount of
information. In the case of the 2D vector, it’s not so bad as it’s only two values -- but suppose we have a signal with
a significant number of samples. If we have to represent it using the same or close to the number of coefficients
relative to one of our orthonormal bases, then we’re not gaining anything. Instead, it would be great if we could
significantly reduce the number of coefficients needed without huge errors.

Frames
● Solution: add vectors to create a frame

Saturday, March 22, 14

Instead, we can add more vectors. A frame is an overspecified basis -- we have more vectors than we need to span
the space of all vectors. But it has the advantage that we can pick the vectors we need for a given data element to get
a decent compression. In this case we can now use only one value per input vector. Note that our goal may not be
exact reproduction: lossy compression is okay.

Frames
● Frame vectors ek must fulfill frame condition

● where

0 < A  B <1

8v : Akvk2 
X

k

| < v, ek > |2  Bkvk2

Saturday, March 22, 14

Basically this means that for every v in our space, the projections onto the frame are bounded, and that the frame
vectors can be used to represent the entire space we care about. I wouldn’t worry too much about it, other than you
can’t just pick any old vectors and get a frame. We’ll talk later about methods for picking frame vectors for a given
data set later. That said, it’s still useful to keep them unit length.

Frames
● Can do the same for signals
● E.g. use dictionary of DCT and wavelets to
cover both smooth and chunky data

Saturday, March 22, 14

Frames
● Given vector and dictionary
● Want minimal set of atoms. How?
● Least squares (sloooooooowwwwww)
● Greedy algorithms
● Matching pursuit

Saturday, March 22, 14

The problem with a frame is that now we have an infinite number of possibilities for our coefficients. How do we pick
the ones we want?

Matching Pursuit
● Method for finding coefficients for v and
given dictionary
● Project v onto all atoms in dictionary
● Take greatest magnitude projection
● Subtract scaled atom from v
● Repeat until v is sufficiently small, or certain #
iterations

Saturday, March 22, 14

Matching Pursuit

Di

Saturday, March 22, 14

Let’s run through an example using 2D vectors. Here the black vectors are our dictionary, and the green vector is the
one we’re compressing. The box is the active set of atoms we’re using to represent our original vector.

Matching Pursuit

Di

Saturday, March 22, 14

We begin by projecting onto each of the atoms

Matching Pursuit

Di

Saturday, March 22, 14

Matching Pursuit

Di

Saturday, March 22, 14

Matching Pursuit

Di

Saturday, March 22, 14

Matching Pursuit

Di
1.3

Saturday, March 22, 14

So now we pick the atom with the largest projection and add it to our set, along with the coefficient

Matching Pursuit

Di
1.3

Saturday, March 22, 14

Then we subtract the portion of the residual pointing along the chosen atom...

Matching Pursuit

Di
1.3

Saturday, March 22, 14

... to get our new residual. At this point we might decide that our error is small enough, or we might continue. Let’s
continue.

Matching Pursuit

Di
1.3

Saturday, March 22, 14

Projecting on all the dictionary again, we see that the longest projection is on the vector pointing up, so we add that
to our active set...

Matching Pursuit

Di
1.3

0.2

Saturday, March 22, 14

And after subtracting the new atom scaled by the new coefficient,

Matching Pursuit

Di
1.3

0.2

Saturday, March 22, 14

we’ll end up with the set of atoms that can represent our original vector. For lossy compression, we could drop the
0.2 term.

Matching Pursuit
● Will converge to solution, but:
● Can oscillate between a small set of atoms

Saturday, March 22, 14

Matching Pursuit

Saturday, March 22, 14

Let’s try another example, but with only two frame vectors. This is ultimately silly because this is a basis, and we
could just invert a matrix to solve it, but it does a good job of illustrating the problem.

Matching Pursuit

Saturday, March 22, 14

So, project and find the largest projection

Matching Pursuit

Saturday, March 22, 14

Subtract projected portion...

Matching Pursuit

Saturday, March 22, 14

... to get new residual

Matching Pursuit

Saturday, March 22, 14

Find max projection again

Matching Pursuit

Saturday, March 22, 14

Subtract projected portion

Matching Pursuit

Saturday, March 22, 14

To get new residual. Note that this is pointing the same direction as the original vector, just shorter.

Matching Pursuit

Saturday, March 22, 14

We project again...

Matching Pursuit

Saturday, March 22, 14

Subtract the scaled atom

Matching Pursuit

Saturday, March 22, 14

To get the new residual

Matching Pursuit

Saturday, March 22, 14

We project again...

Matching Pursuit

Saturday, March 22, 14

And subtract...

Matching Pursuit

Saturday, March 22, 14

And here we are again, just shorter. So we’re just going to keep oscillating between these two vectors.

Orthogonal Matching Pursuit
● Refinement of MP
● Update all coefficients computed so far by
reprojecting onto current set of atoms, before
subtracting
● Better results

Saturday, March 22, 14

Orthogonal Matching Pursuit
● Reprojection step
● Ideally do

x = D

�1
i y

Saturday, March 22, 14

Orthogonal Matching Pursuit
● Reprojection step
● Ideally do

Not square
x = D

�1
i y

Saturday, March 22, 14

Orthogonal Matching Pursuit
● Reprojection step
● Ideally do

● Instead:

Not square

(pseudo-inverse)x = (DT
i Di)

�1
D

T
i y

x = D

�1
i y

Saturday, March 22, 14

One note on the pseudo-inverse -- doing it directly is not stable (floating point error), so need to use Cholesky
decomposition. See Robin and Manny’s talk from last year for more details on this.

Orthogonal Matching Pursuit

Di

Saturday, March 22, 14

So let’s try that again

Orthogonal Matching Pursuit

Di

Saturday, March 22, 14

Project and find the largest projection

Orthogonal Matching Pursuit

Di

Saturday, March 22, 14

Add that to our current set of atoms

Orthogonal Matching Pursuit

Di
0.7

Saturday, March 22, 14

The we reproject the original vector against the single atom in our current set to get our coefficient

Orthogonal Matching Pursuit

Di
0.7

Saturday, March 22, 14

Subtract projected portion to get new residual

Orthogonal Matching Pursuit

Di
0.7

Saturday, March 22, 14

Find max projection again

Orthogonal Matching Pursuit

Di
0.7

Saturday, March 22, 14

And add that atom to our current set

Orthogonal Matching Pursuit

Di
0.7

Saturday, March 22, 14

At this point, these are the two atoms in our active set. So we reproject the original vector against these to update
the coefficients...

Orthogonal Matching Pursuit

Di
1.5

-1.0

Saturday, March 22, 14

To get something like this. Then we subtract the scaled atoms from the original vector to get the new residual....

Orthogonal Matching Pursuit

Di

Saturday, March 22, 14

Which is negligible, so we’re done.

Orthogonal Matching Pursuit
● Reprojection step takes extra time
● But converges much quicker!

Saturday, March 22, 14

Choosing a Dictionary
● Can just pick one
● E.g. DCT + wavelets
● Refine from training set of data
● K-SVD

Saturday, March 22, 14

● Can represent signal rep. as matrix mult.

● Error is

K-SVD

.

D x y

⇡

ky �Dxk2

Saturday, March 22, 14

Here y is our original signal, D is our dictionary, and x are the coefficients.

● Can extend to many signals

● Error is (matrix norm)

K-SVD

.

D X Y

kY �DXk2

...

...⇡

Saturday, March 22, 14

Here each row in X represents all the coefficients corresponding to a particular atom in D, across all our training
signals, and Y is the training set of signals.

● Idea: iteratively minimize error per atom

● Error is

K-SVD

.

D X Y...

...⇡
dk

x

k
T

kY �DXk2

Saturday, March 22, 14

● Idea: iteratively minimize error per atom

● Error is

dk

K-SVD

.

D X Y...

...⇡
x

k
T

kY �DXk2

Saturday, March 22, 14

● Idea: iteratively minimize error per atom

● Error is

dk

K-SVD

.

D X Y...

...

kY �DXk2 = k(Y �
X

j 6=k

djx
j
T)� dkx

k
T k2 = kEk � dkx

k
T k2

⇡
x

k
T

Saturday, March 22, 14

We can rewrite our error, pulling out the terms corresponding to the atom we’re trying to minimize, and recombining
the rest to get an error term E_k.

● Idea: iteratively minimize error per atom

● Error is

K-SVD

.

D X Y

⇡
...

...

kY �DXk2 = k(Y �
X

j 6=k

djx
j
T)� dkx

k
T k2 = kEk � dkx

k
T k2

Minimize

dk

x

k
T

Saturday, March 22, 14

K-SVD
● How to minimize ?
● Idea:
● decompose
● use to create new and

kEk � dkx
k
T k2

Ek

dk x

k
T

Saturday, March 22, 14

K-SVD
● Decompose using SVD

●U, V orthogonal
●W diagonal, large to small magnitude
● Problem: need vectors

Ek

Ek = UWVT

Saturday, March 22, 14

It’s not clear how this helps us: U, W and V are all matrices.

K-SVD
● Decompose using SVD

●U, V orthogonal
●W diagonal, large to small magnitude
● Problem: need vectors

Ek

Ek = UWVT

Saturday, March 22, 14

The key is this property of W

K-SVD
● Decompose using SVD

●U, V orthogonal
●W diagonal, large to small magnitude
● Contributes the most to :

Ek

Ek = UWVT

Ek

u0w00v
0
T

Saturday, March 22, 14

So the upper leftmost element of W is the largest in magnitude. And since W is diagonal, we only end up multiplying
that element by the first column in U and the first row in V^T. This product will end up being the largest contribution
to E_k, so we’ll use that to generate our new d and x values. This is called a rank-1 approximation.

K-SVD
● How to minimize ?
● Decompose using SVD

● Use decomposition to minimize

kEk � dkx
k
T k2

Ek

Ek = UWVT

d̃k = u0

x̃

k
T = w00v

0
T

Saturday, March 22, 14

K-SVD
Iterate until desired error level reached:

1. Compute X coefficients for Y via OMP
2. For each column of D/row of X

a. compute
b. decompose using SVD
c. becomes
d. becomes
 Text

Ek

Ek

dk

x

k
T w00v

0
T

u0

Saturday, March 22, 14

● One wrinkle: doesn’t converge well
● Solution: collapse to non-zero entries
and collapse to corresponding columns

●Converges much better

Ek

K-SVD

-
...

...

x

k
T

x

k
T

dk

Ek

Saturday, March 22, 14

K-SVD
Iterate until desired error level reached:

1. Compute X coefficients for Y via OMP
2. For each column of D/row of X

a. using only non-zero entries of , compute
b. decompose using SVD
c. becomes
d. becomes Text

Ek

Ek

dk

x

k
T w00v

0
T

u0

x

k
T

Saturday, March 22, 14

Summary
● For compression, can use more than ONB
● Use dictionary to get sparse coding
● Use pursuit algorithm to determine coeffs
● Use K-SVD to tailor dictionary to data

Saturday, March 22, 14

References
● Green & Ko, “Frames, Sparsity and New Math for
Games”
● Green & Ko, “Orthogonal Matching Pursuit and
K-SVD for Sparse Encoding”
● Ko, “Dictionary Learning in Games”
● Rubenstein, Bruckstein, and Elad, “Dictionaries
for Sparse Representation Modeling”

Saturday, March 22, 14

The last is a good overall article about using dictionaries for representing signals, and covers a lot more options than
presented here. Two of the authors were also the creators of K-SVD.

Contact Info
● jim@essentialmath.com
● Google+: +JimVanVerth
● Twitter: @cthulhim

Saturday, March 22, 14

mailto:jim@essentialmath.com
mailto:jim@essentialmath.com

