
Fluid Techniques

Jim Van Verth
Senior Engine Programmer, Insomniac Games

Introductory Bits

●General summary with some details
●Not a fluids expert
●Theory and examples

What is a Fluid?

●Deformable
●Flowing
●Examples

● Smoke
● Fire
● Water

What is a Fluid?

What is a Fluid?

What is a Fluid?

Fluid Concepts

●Fluids have variable density
● (Density field)

Fluid Concepts

●Fluids “flow”
● (Vector field)

Fluid Concepts

●Need way to represent
● Density (x)
● Velocity (u)
● Sometimes temperature

Fluid Concepts

●Our heroes:

Navier Stokes

Fluid Concepts

●Their creation:

!

" •u = 0
#u
#t

= $(u•")u$ 1
%
"p+ &"2u+ f

Fluid Concepts

●Their creation:

!

" •u = 0
#u
#t

= $(u•")u$ 1
%
"p+ &"2u+ f

THE END!

Fluid Concepts

●Their creation:

!

" •u = 0
#u
#t

= $(u•")u$ 1
%
"p+ &"2u+ f

SERIOUSLY --
WHAT DOES THIS MEAN?

Fluid Concepts

●Want change in velocity field

Fluid Concepts

●Want change in velocity field

Fluid Concepts

●Want change in velocity field

Fluid Concepts

●Want change in velocity field

Fluid Concepts

●What affects it?

Fluid Concepts

●What affects it?

External Forces

Fluid Concepts

●What affects it?

Viscosity

Fluid Concepts

●What affects it?

Advection

Fluid Concepts

●What affects it?
Pressure

Fluid Concepts

●Back to Navier-Stokes

!

" •u = 0
#u
#t

= $(u•")u$ 1
%
"p+ &"2u+ f

Fluid Concepts

●Back to Navier-Stokes

!

" •u = 0
#u
#t

= $(u•")u$ 1
%
"p+ &"2u+ f

Change in Velocity

Fluid Concepts

●Back to Navier-Stokes

!

" •u = 0
#u
#t

= $(u•")u$ 1
%
"p+ &"2u+ f

Advection

Fluid Concepts

●Back to Navier-Stokes

!

" •u = 0
#u
#t

= $(u•")u$ 1
%
"p+ &"2u+ f

Pressure

Fluid Concepts

●Back to Navier-Stokes

!

" •u = 0
#u
#t

= $(u•")u$ 1
%
"p+ &"2u+ f

Viscosity

Fluid Concepts

●Back to Navier-Stokes

!

" •u = 0
#u
#t

= $(u•")u$ 1
%
"p+ &"2u+ f

External Forces

Fluid Concepts

●Back to Navier-Stokes

!

" •u = 0
#u
#t

= $(u•")u$ 1
%
"p+ &"2u+ f

HOLD ON THERE BUCKO…

Fluid Concepts

●Back to Navier-Stokes

!

" •u = 0
#u
#t

= $(u•")u$ 1
%
"p+ &"2u+ f

WHAT’S THIS ONE?

Fluid Concepts

●Back to Navier-Stokes

!

" •u = 0
#u
#t

= $(u•")u$ 1
%
"p+ &"2u+ f

Mass Conservation

Fluid Concepts

●In principle then, Navier-Stokes is…

!

" •u = 0
#u
#t

= $(u•")u$ 1
%
"p+ &"2u+ f

Fluid Concepts

●In principle then, Navier-Stokes is…

!

" •u = 0
#u
#t

= $(u•")u$ 1
%
"p+ &"2u+ f

THE END!

Fluid Concepts

●But not really, of course

Fluid Concepts

●But not really, of course
●Little tiny detail of implementation

Computational Fluid Types

●Grid-based/Eulerian (Stable Fluids)
●Particle-based/Lagrangian (Smoothed
Particle Hydrodynamics)
●Surface-based (wave composition)

Grid-Based
●Store density, temp in grid centers

●Velocity (flow) from centers as well

●Could also do edges

Grid-Based

Grid-Based

●How do we use this?

!

" •u = 0
#u
#t

= $(u•")u$ 1
%
"p+ &"2u+ f

Grid-Based

●Jos Stam devised stable approximation:
“Stable Fluids”, SIGGRAPH ‘99

Grid-Based

●How do we use this?

!

" •u = 0
#u
#t

= $(u•")u$ 1
%
"p+ &"2u+ f

Must maintain

Grid-Based

●How do we use this?

!

" •u = 0
#u
#t

= $(u•")u$ 1
%
"p+ &"2u+ f

Idea: compute

!

" •u = 0
#u
#t

= $(u•")u$ 1
%
"p+ &"2u+ f

Idea: compute

Grid-Based

●How do we use this?

Grid-Based

●How do we use this?

!

" •u = 0
#u
#t

= $(u•")u$ 1
%
"p+ &"2u+ f

Idea: compute

then project to 0 div field

Grid-Based

●How do we use this?

!

"u
"t

= P(#(u•$)u+ %$2u+ f)

End up with

Grid-Based

●How do we use this?

!

"u
"t

= P(#(u•$)u+ %$2u+ f)
Easy

Grid-Based

●How do we use this?

!

"u
"t

= P(#(u•$)u+ %$2u+ f)
Sparse linear system

Grid-Based

●How do we use this?

!

"u
"t

= P(#(u•$)u+ %$2u+ f)

Sparse linear system

Grid-Based

●How do we use this?

!

"u
"t

= P(#(u•$)u+ %$2u+ f)

Non-linear… ugh

Grid-Based

●How do we use this?

!

"u
"t

= P(#(u•$)u+ %$2u+ f)

Non-linear… ugh

Can approximate

Grid-Based
● Overview

● Update velocities based on
● Forces, then
● Advection, then
● Viscosity

● Project velocities to zero divergence
● Update densities based on

● Input sources
● Velocity
● Diffusion (similar to viscosity, sometimes not used)

● Draw it

Rendering Grid-Based

●Build level surface

Rendering Grid-Based

●Determining color, transparency

Issues

●Limited space
●Water “splashes” get lost
●Can be computationally expensive
●Dampens down
●But stable

Implementation

●Little Big Planet
● “Death smoke”
● Bubble pop
● Other smoke effects

●Hellgate: London
●GDC09 NVIDIA demo

Smoothed Particle Hydrodynamics

●Approximate fluid with small(er) set of
particles

SPH

●Velocities at particles provide flow

SPH

●Idea: treat as particle system

SPH

●Idea: treat as particle system
● Determine forces

SPH

●Idea: treat as particle system
● Determine forces
● Update velocities, positions

SPH

●Weighted average gives density
(smoothing kernel)

SPH

●Can also use kernel to get general
velocity

SPH

●Usually center at particle

SPH

●Specify width by h

h

SPH

●Example kernel

h

SPH

●Back to Navier-Stokes

!

" •u = 0
#u
#t

= $(u•")u$ 1
%
"p+ &"2u+ f

SPH

●Back to Navier-Stokes

!

" •u = 0
#u
#t

= $(u•")u$ 1
%
"p+ &"2u+ f

Have fixed # particles and mass, so…

SPH

●Back to Navier-Stokes

!

" •u = 0
#u
#t

= $(u•")u$ 1
%
"p+ &"2u+ f

Have fixed # particles and mass, so…
mass is automatically conserved

SPH

●Back to Navier-Stokes

!

" •u = 0
#u
#t

= $(u•")u$ 1
%
"p+ &"2u+ f

Advection automagically handled by
particle update, so…

SPH

●Back to Navier-Stokes

!

" •u = 0
#u
#t

= $(u•")u$ 1
%
"p+ &"2u+ f

Advection automagically handled by
particle update, so…

SPH

●Simplifies to

!

" •u = 0
#u
#t

= $(u•")u$ 1
%
"p+ &"2u+ f

SPH

●Simplifies to

!

"
dv
dt

= #$p + µ$2u+ "f

SPH

●Functional breakdown

!

"
du
dt

= #$p + µ$2u+ "f

SPH

●Functional breakdown

Change in velocity
!

"
du
dt

= #$p + µ$2u+ "f

SPH

●Functional breakdown

Pressure
!

"
du
dt

= #$p + µ$2u+ "f

SPH

●Functional breakdown

Viscosity
!

"
du
dt

= #$p + µ$2u+ "f

SPH

●Functional breakdown

External forces
!

"
du
dt

= #$p + µ$2u+ "f

SPH

●Compute densities, local pressure
●Generate forces on particles

● External
● Pressure
● Viscosity

●Update velocities, positions
●Render

SPH

●Rendering
● Marching cubes (using smoothing kernel)
● Blobs around particles/splatting

SPH Implementations

●Takahiro Harada
●Kees van Kooten (Playlogic)
●NVIDIA PhysX
●Rama Hoetzlein* (SPH Fluids 2.0)
●Takashi AMADA*

* Source code available

SPH Issues

●Need a lot of particles
●Computing level surface can be a pain
●Can be difficult to get stable simulation

SPH Improvements

●Spatial hashing
●Variable kernel width
●CFD/SPH Hybrid

● CFD manages general flow
● SPH “splashes”

Surface Simulation

●Idea: for water, all we care about is the
air-water boundary (level surface)
●Why simulate the rest?
●This is what Insomniac R20 system does

R20

● Done by Mike Day, based on Titanic water
● Basic idea: convolve sinusoids procedurally

● Much cheaper to multiply in frequency domain and do FFT
(assuming periodic)

* =

R2O

●Review
● Sinusoid in spatial domain

R2O

●Review
● Can represent as magnitude+phase in

frequency slot

R2O

●Review
● Requires periodic function

FFT

R2O

●Review
● Multiple sinusoids end up at multiple entries

FFT

R2O

●Wave speed dependant on wavelength

R2O

●Wave speed dependant on wavelength

R2O

●Wave speed dependant on wavelength

R2O

●Wave speed dependant on wavelength

R2O

●Wave speed dependant on wavelength
● I.e. phases update at different rates
● AKA dispersion

R2O

●General procedure
● Start with convolved data in (r,ϕ) form
● Update phase angles for each sinusoid

●Angular velocity*dt
●Dependent on frequency

● Do inverse FFT to get spatial result

R2O

●FFT kernel limited to 32x32
●Combine multiple levels via LOD height
field scheme

● Gives high detail close to camera

R2O

●Interactive waves
● Just adding in splashes looks fake
● Instead, do some more FFT trickery so all

our work occurs in the same domain
● Non-periodic, so have to manage edges
● Gives nice dispersion effects

R2O

●Rendering
● Rendered as height field mesh
● Add normal map for detail
● Cube map/frame buffer map for reflections
● Distortion effect for refractions

R2O

●Nifty video

References

● Jos Stam, “Stable Fluids”, SIGGRAPH 1999
● Mattias Müller, et. al, “Particle-Based Fluid

Simulation for Interactive Applications”,
SIGGRAPH Symposium on Computer
Animation 2003

● Jerry Tessendorf, “Simulating Ocean Water,”
SIGGRAPH Course Notes.

● http://www.insomniacgames.com/tech

