

MARCH 5-9, 2012 WWW.GDCONF.COM

GAME DEVELOPERS CONFERENCE^{*} 2012

Introductory Bits

General summary with some details
Not a fluids expert
Theory and examples

MARCH 5-9, 2012 WWW.GDCONF.COM

What is a Fluid?

- Deformable
- Flowing
- •Examples
 - Smoke
 - Fire
 - Water

MARCH 5-9, 2012 WWW.GDCONF.COM

What is a Fluid?

MARCH 5-9, 2012 WWW.GDCONF.COM

What is a Fluid?

MARCH 5-9, 2012 WWW.GDCONF.COM

MARCH 5-9, 2012 WWW.GDCONF.COM

Fluid Concepts

•Fluids have variable density

• (Density field)

MARCH 5-9, 2012 WWW.GDCONF.COM

Fluid Concepts

•Fluids "flow"

• (Vector field)

MARCH 5-9, 2012 WWW.GDCONF.COM

Fluid Concepts

Need way to represent

- Density (x)
- Velocity (u)
- Sometimes temperature

MARCH 5-9, 2012 WWW.GDCONF.COM

Fluid Concepts

•Our heroes:

Navier Stokes

MARCH 5-9, 2012 WWW.GDCONF.COM

Fluid Concepts

•Their creation:

MARCH 5-9, 2012 WWW.GDCONF.COM

Fluid Concepts

•Their creation:

MARCH 5-9, 2012 WWW.GDCONF.COM

Fluid Concepts

•Their creation:

MARCH 5-9, 2012 WWW.GDCONF.COM

Fluid Concepts

MARCH 5-9, 2012 WWW.GDCONF.COM

Fluid Concepts

MARCH 5-9, 2012 WWW.GDCONF.COM

Fluid Concepts

MARCH 5-9, 2012 WWW.GDCONF.COM

Fluid Concepts

GAME DEVELOPERS CONFERENCE[®] 2012

MARCH 5-9, 2012 WWW.GDCONF.COM

Fluid Concepts

MARCH 5-9, 2012 WWW.GDCONF.COM

Fluid Concepts

•What affects it?

Pressure

MARCH 5-9, 2012 WWW.GDCONF.COM

Fluid Concepts

MARCH 5-9, 2012 WWW.GDCONF.COM

Fluid Concepts

Back to Navier-Stokes

Change in Velocity

MARCH 5-9, 2012 WWW.GDCONF.COM

Fluid Concepts

MARCH 5-9, 2012 WWW.GDCONF.COM

Fluid Concepts

MARCH 5-9, 2012 WWW.GDCONF.COM

Fluid Concepts

MARCH 5-9, 2012 WWW.GDCONF.COM

Fluid Concepts

MARCH 5-9, 2012 WWW.GDCONF.COM

Fluid Concepts

•In principle then, Navier-Stokes is...

MARCH 5-9, 2012 WWW.GDCONF.COM

Fluid Concepts

•In principle then, Navier-Stokes is...

MARCH 5-9, 2012 WWW.GDCONF.COM

Fluid Concepts

•But not really, of course

MARCH 5-9, 2012 WWW.GDCONF.COM

Fluid Concepts

But not really, of courseLittle tiny detail of implementation

GAME DEVELOPERS CONFERENCE^{*} 2012

Computational Fluid Types

•Grid-based/Eulerian (Stable Fluids)

- Particle-based/Lagrangian (Smoothed Particle Hydrodynamics)
- •Surface-based (wave composition)
MARCH 5-9, 2012 WWW.GDCONF.COM

Grid-Based

•Store density, temp in grid centers

MARCH 5-9, 2012 WWW.GDCONF.COM

Grid-Based

•Velocity (flow) from centers as well

•Could also do edges

MARCH 5-9, 2012 WWW.GDCONF.COM

Grid-Based

MARCH 5-9, 2012 WWW.GDCONF.COM

Grid-Based

•Jos Stam devised stable approximation: "Stable Fluids", SIGGRAPH '99

MARCH 5-9, 2012 WWW.GDCONF.COM

Grid-Based

MARCH 5-9, 2012 WWW.GDCONF.COM

Grid-Based

- Overview
 - Update velocities based on
 - Forces, then
 - Advection, then
 - Viscosity
 - Project velocities to zero divergence
 - Update densities based on
 - Input sources
 - Velocity
 - Diffusion (similar to viscosity, sometimes not used)
 - Draw it

MARCH 5-9, 2012 WWW.GDCONF.COM

Rendering Grid-Based

Build level surface

MARCH 5-9, 2012 WWW.GDCONF.COM

Rendering Grid-Based

•Determining color, transparency

MARCH 5-9, 2012 WWW.GDCONF.COM

Issues

- Limited space
- •Water "splashes" get lost
- Can be computationally expensive
- Dampens down
- But stable

MARCH 5-9, 2012 WWW.GDCONF.COM

Implementation

Little Big Planet

- "Death smoke"
- Bubble pop
- Other smoke effects

•Hellgate: London

• GDC09 NVIDIA demo

MARCH 5-9, 2012 WWW.GDCONF.COM

Smoothed Particle Hydrodynamics

Approximate fluid with small(er) set of particles

MARCH 5-9, 2012 WWW.GDCONF.COM

•Velocities at particles provide flow

MARCH 5-9, 2012 WWW.GDCONF.COM

•Idea: treat as particle system

MARCH 5-9, 2012 WWW.GDCONF.COM

•Idea: treat as particle system

• Determine forces

MARCH 5-9, 2012 WWW.GDCONF.COM

SPH

•Idea: treat as particle system

- Determine forces
- Update velocities, positions

MARCH 5-9, 2012 WWW.GDCONF.COM

•Weighted average gives density (smoothing kernel)

MARCH 5-9, 2012 WWW.GDCONF.COM

SPH

Can also use kernel to get general velocity

MARCH 5-9, 2012 WWW.GDCONF.COM

SPH

•Usually center at particle

MARCH 5-9, 2012 WWW.GDCONF.COM

•Specify width by *h*

MARCH 5-9, 2012 WWW.GDCONF.COM

SPH

Back to Navier-Stokes

MARCH 5-9, 2012 WWW.GDCONF.COM

SPH

Back to Navier-Stokes

Have fixed # particles and mass, so...

MARCH 5-9, 2012 WWW.GDCONF.COM

SPH

Back to Navier-Stokes

Have fixed # particles and mass, so... mass is automatically conserved

MARCH 5-9, 2012 WWW.GDCONF.COM

SPH

Back to Navier-Stokes

Advection automagically handled by particle update, so...

MARCH 5-9, 2012 WWW.GDCONF.COM

SPH

Back to Navier-Stokes

Advection automagically handled by particle update, so...

MARCH 5-9, 2012 WWW.GDCONF.COM

•Simplifies to

MARCH 5-9, 2012 WWW.GDCONF.COM

•Simplifies to

MARCH 5-9, 2012 WWW.GDCONF.COM

SPH

Functional breakdown

$$\rho \frac{d\mathbf{u}}{dt} = -\nabla p + \mu \nabla^2 \mathbf{u} + \rho \mathbf{f}$$

MARCH 5-9, 2012 WWW.GDCONF.COM

Functional breakdown

$$\rho \frac{d\mathbf{u}}{dt} = -\nabla p + \mu \nabla^2 \mathbf{u} + \rho \mathbf{f}$$

Change in velocity

MARCH 5-9, 2012 WWW.GDCONF.COM

Functional breakdown

Pressure

MARCH 5-9, 2012 WWW.GDCONF.COM

SPH

Functional breakdown

$$\rho \frac{d\mathbf{u}}{dt} = -\nabla p + \mu \nabla^2 \mathbf{u} + \rho \mathbf{f}$$

Viscosity

MARCH 5-9, 2012 WWW.GDCONF.COM

SPH

Functional breakdown

$$\rho \frac{d\mathbf{u}}{dt} = -\nabla p + \mu \nabla^2 \mathbf{u} + \rho \mathbf{f}$$

External forces

MARCH 5-9, 2012 WWW.GDCONF.COM

SPH

- •Compute densities, local pressure
- •Generate forces on particles
 - External
 - Pressure
 - Viscosity
- •Update velocities, positions
- Render

MARCH 5-9, 2012 WWW.GDCONF.COM

SPH

Rendering

- Marching cubes (using smoothing kernel)
- Blobs around particles/splatting

MARCH 5-9, 2012 WWW.GDCONF.COM

GAME DEVELOPERS CONFERENCE[®] 2012

SPH Implementations

- Takahiro Harada
- •Kees van Kooten (Playlogic)
- •NVIDIA PhysX
- •<u>Rama Hoetzlein*</u> (SPH Fluids 2.0)
- Takashi AMADA*
 - * Source code available

MARCH 5-9, 2012 WWW.GDCONF.COM

SPH Issues

•Need a *lot* of particles

•Computing level surface can be a pain

•Can be difficult to get stable simulation

MARCH 5-9, 2012 WWW.GDCONF.COM

SPH Improvements

- •Spatial hashing
- •Variable kernel width
- CFD/SPH Hybrid
 - CFD manages general flow
 - SPH "splashes"

MARCH 5-9, 2012 WWW.GDCONF.COM

Surface Simulation

- •Idea: for water, all we care about is the air-water boundary (level surface)
- •Why simulate the rest?
- •This is what Insomniac R20 system does

MARCH 5-9, 2012 WWW.GDCONF.COM

R20

- Done by Mike Day, based on *Titanic* water
 - Basic idea: convolve sinusoids procedurally

 Much cheaper to multiply in frequency domain and do FFT (assuming periodic)

MARCH 5-9, 2012 WWW.GDCONF.COM

Review

• Sinusoid in spatial domain

MARCH 5-9, 2012 WWW.GDCONF.COM

Review

Can represent as magnitude+phase in frequency slot

MARCH 5-9, 2012 WWW.GDCONF.COM

Review

• Requires periodic function

MARCH 5-9, 2012 WWW.GDCONF.COM

R20

Review

• Multiple sinusoids end up at multiple entries

MARCH 5-9, 2012 WWW.GDCONF.COM

R20

MARCH 5-9, 2012 WWW.GDCONF.COM

R20

- I.e. phases update at different rates
- AKA dispersion

MARCH 5-9, 2012 WWW.GDCONF.COM

R20

•General procedure

- Start with convolved data in (r, ϕ) form
- Update phase angles for each sinusoid
 Angular velocity*dt

•Dependent on frequency

• Do inverse FFT to get spatial result

MARCH 5-9, 2012 WWW.GDCONF.COM

R20

•FFT kernel limited to 32x32

•Combine multiple levels via LOD height field scheme

• Gives high detail close to camera

MARCH 5-9, 2012 WWW.GDCONF.COM

R20

Interactive waves

- Just adding in splashes looks fake
- Instead, do some more FFT trickery so all our work occurs in the same domain
- Non-periodic, so have to manage edges
- Gives nice dispersion effects

MARCH 5-9, 2012 WWW.GDCONF.COM

R20

Rendering

- Rendered as height field mesh
- Add normal map for detail
- Cube map/frame buffer map for reflections
- Distortion effect for refractions

MARCH 5-9, 2012 WWW.GDCONF.COM

Nifty video

MARCH 5-9, 2012 WWW.GDCONF.COM

References

- Jos Stam, "Stable Fluids", SIGGRAPH 1999
- Mattias Müller, et. al, "Particle-Based Fluid Simulation for Interactive Applications", SIGGRAPH Symposium on Computer Animation 2003
- Jerry Tessendorf, "Simulating Ocean Water," SIGGRAPH Course Notes.
- http://www.insomniacgames.com/tech