Fluids in Games

Jim Van Verth
Insomniac Games
WwWw.Insomniacgames.com
jim@essentialmath.com

Introductory Bits

* General summary with some details
* Not a fluids expert
* Theory and examples

What is a Fluid?

* Deformable
* Flowing
 Examples

— Smoke
— Fire
— Water

What is a Fluid?

What is a Fluid?

What is a Fluid?

Fluid Concepts

* Fluids have variable density
— (Density field)

Fluid Concepts

* Fluids “flow”
— (Vector field)

é'\»

Fluid Concepts

* Need way to represent
— Density (x)
— Velocity (u)
— Sometimes temperature

Fluid Concepts

e Our heroes:

Fluid Concepts

e Our heroes:

Fluid Concepts

e Our heroes:

Navier

Fluid Concepts

 Their creation:

Veu=0

@=—(u'V)u—le+VV2u+f

ot [,

Fluid Concepts

 Their creation:

WO
%f‘"?\%‘_; Vp + vWu+f

\

Fluid Concepts

 Their creation:

Veu=0
@=—(u'V)u—le+VV2u+f

ot [,
SERIOUSLY -

WHAT DOES THIS MEAN?

Fluid Concepts

* \WWant change in velocity field

= NN
\Q\

Fluid Concepts

* \WWant change in velocity field

Fluid Concepts

* \WWant change in velocity field

: /'\
> >\‘
A N

Fluid Concepts

* \WWant change in velocity field

— — —
-

Fluid Concepts

 \What affects it?

— — —
-

Fluid Concepts

 \What affects it?

— — —
-

External Forces

Fluid Concepts

 \What affects it?

P
|/
Viscosity\; £

Fluid Concepts

 \What affects it?

Advection

T

Fluid Concepts

 \What affects it?

Pressure

.

Fluid Concepts

 Back to Navier-Stokes

Veu=0

@=—(u'V)u—le+VV2u+f

ot [,

Fluid Concepts

* Brief notational diversion

Veu=0

@=—(u'V)u—le+VV2u+f

ot [,

Fluid Concepts

* Brief notational diversion

Gradient (vector along partial derivative)

Fluid Concepts

* Brief notational diversion

%=—(u'V)u—le+VV u+f

Divergence (real derivative of vec. field)

Fluid Concepts

* Brief notational diversion

Laplacian (divergence of gradient)

Fluid Concepts

* Brief notational diversion

Advection operator (transport of flow)

Fluid Concepts

 Back to Navier-Stokes

—Vp+wWu+f

Fluid Concepts

 Back to Navier-Stokes

Veu=0

s =— le +vwWu+f
ot [,

Fluid Concepts

 Back to Navier-Stokes

Fluid Concepts

 Back to Navier-Stokes

i —(u'V)u—le f
ot

Fluid Concepts

 Back to Navier-Stokes

Veu=0

i —(u*V)u- le +wWu

ot [,

Fluid Concepts

 Back to Navier-Stokes

Veu=0

@=—(u'V)u—le+VV2u+f

ot [,

Fluid Concepts

 Back to Navier-Stokes

—Vp+wWu+f

Fluid Concepts

 Back to Navier-Stokes

—Vp+wWu+f

Fluid Concepts

* In principle then, Navier-Stokes is...

Veu=0

@=—(u'V)u—le+VV2u+f

ot [,

Fluid Concepts

* In principle then, Navier-Stokes is...

Veu=0

%=—(u'V)u——Vp+VV2u+f
l

Fluid Concepts

« But not really, of course

Fluid Concepts

« But not really, of course
* Little tiny detail of implementation

Computational Fluid Types

» Grid-based/Eulerian (Stable Fluids)

 Particle-based/Lagrangian (Smoothed
Particle Hydrodynamics)

» Surface-based (wave composition)

Grid-Based

« Store density, temp in grid centers

e
e

N ——

Grid-Based

* Velocity (flow) from centers as well

_—v — —p
B
\A

i \>\A\A

/'\>\’\\
A
"

» Could also do edges

Grid-Based

* How do we use this?

Veu=0

@=—(u'V)u—le+VV2u+f

ot [,

Grid-Based

« Jos Stam devised stable approximation:
“Stable Fluids”, SIGGRAPH 99

Grid-Based

* How do we use this?

Must maintain

=—(u*Vyu-—Vp+wWu+f

ou 1
ot [,

Grid-Based

* How do we use this?

ldea: compute

=—(u*Vyu-—Vp+wWu+f

ou 1
ot [,

Grid-Based

* How do we use this?

'dea:

le+ wWou+f
0

Grid-Based

* How do we use this?

—(u*Viu- le +vwWu+f
0
then project to O div field

Grid-Based

* How do we use this?

End up with

;ﬂ =P(-(u*V)u+vWu+f)
[

Grid-Based

* How do we use this?

Eas
B y

e P(—(u* V)u + szu-l@

Grid-Based

* How do we use this?

2 linear system

% =P(—(u*V)u ++ i)

Grid-Based

* How do we use this?

Sparse linear system
% =@(—(u *V)u+vWu+f)

Grid-Based

* How do we use this?

Non-linear...

ou >
——P +vwWu+ft
E m)

Grid-Based

» Updating advection

General idea:

Grid-Based

» Updating advection

General idea: look at current position

Grid-Based

» Updating advection

General idea: follow flow to prev. position

Grid-Based

» Updating advection

General idea: get velocity there

‘\A

Grid-Based

» Updating advection

General idea: assign to current position

‘\A

- &

Grid-Based

e QOverview

— Update velocities based on
* Forces, then
« Advection, then
* Viscosity
— Project velocities to zero divergence

— Update densities based on
* Input sources
* Velocity
« Diffusion (similar to viscosity, sometimes not used)

— Draw it

Rendering Grid-Based

 Build level surface

Rendering Grid-Based

* Determining color, transparency

Issues

Limited space

Water “splashes” get lost

Can be computationally expensive
Dampens down

But stable

Implementation

— “Death smoke”
— Bubble pop
— Other smoke effects

Smoothed Particle
Hydrodynamics

* Approximate fluid with small(er) set of
particles

SPH

* Velocities at particles provide flow

SPH

 |dea: treat as particle system

SPH

 |dea: treat as particle system
— Determine forces

SPH

 |dea: treat as particle system
— Determine forces
— Update velocities, positions

SPH

* Weighted average gives density
(smoothing kernel)

SPH

« Can also use kernel to get general velocity

2o

o

SPH

» Usually center at particle

LR

SPH

» Specify width by 4

SPH

» Specify vector from other particles by r

SPH

 Example kernel

SPH

e Common kernel

(h>-r°) Osrs<h

0 otherwise

SPH

e Common kernel

(h*-r*)’ O=sr=h

0 otherwise

Clamps to zero at boundary

SPH

e Common kernel

(h*-r*)’ O=sr=h

0 otherwise

Clamps to zero at boundary
Uses length squared

SPH

 General SPH rule

AS(X)=EmJ. jW(r—rj,h)
J J

SPH

 General SPH rule

SPH

 General SPH rule

SPH

 General SPH rule

SPH

 General SPH rule

J J

SPH

« Computing density

0 .

SPH

« Computing density

SPH

* Local pressure

k Is gas constant

SPH

* Local pressure

k Is gas constant

Can be unstable, so...

SPH

* Local pressure (alternative)

No effect on gradient, more stable

SPH

 Back to Navier-Stokes

Veu=90
ou 1

—=—(*Vu-—Vp+wWu+f
ot I,

SPH

 Back to Navier-Stokes

Veu=90
ou 1

— =—@*Vu-—Vp+wWu+f
ot I,

Have fixed # particles and mass, so...

SPH

 Back to Navier-Stokes

ou

a—=—(u°V)u——Vp+VV2u+f
l

Have fixed # particles and mass, so...
mass Is automatically conserved

SPH

 Back to Navier-Stokes

ou

a—=—(u°V)u——Vp+VV2u+f
l

Advection automagically handled by
particle update, so...

SPH

 Back to Navier-Stokes

Vp+vwWu+f

Advection automagically handled by
particle update, so...

SPH

« Simplifies to

Vp+vwWu+f

SPH

« Simplifies to

dav

— =-Vp+uVu+ of
R p+u P

SPH

 Functional breakdown

p% =-Vp+ uViu+ of

SPH

 Functional breakdown

~-Vp + uVu+ of

SPH

 Functional breakdown

du
— = + uV:u + pf
d

SPH

 Functional breakdown

—==Vp+uV-u+ of

SPH

 Functional breakdown

p% =-Vp+ uvzu@

SPH

Compute densities, local pressure

Generate forces on particles
— External

— Pressure

— Viscosity

Update velocities, positions
Render

SPH

* Pressure

fipressure - 4 _Vp (rl)

SPH

* Pressure

fipressure g E mj J VW (ri - rj ,h)

J J

SPH

* Pressure

fipressure g E mj J VW (ri - rj ,h)

J J

Asymmelric, so...

SPH

* Pressure
pressure
f = Em ;
j

Ensures 2-particle interaction equal

SPH

* Pressure kernel

Problem: gradient of poly6 kernel is
zero at origin

SPH

* Pressure kernel

Problem: gradient of poly6 kernel is
zero at origin

SPH

* Pressure kernel

h-r) Osr=<h

0 otherwise

SPH

 Viscosity

fviscosity
i

= uVev(r,

SPH

 Viscosity

viscosity]
f = ,uE m,
j [

SPH

 Viscosity

viscosity]
f = U E m,
j [

Also asymmetric, so...

SPH

 Viscosity

Ensures 2-particle interaction opposite

SPH

 Viscosity kernel

15 Lo L 0srsh

2
27h’]6 2r otherwise

(r,h) =

VISCOSIty

SPH

* Rendering
— Marching cubes (using smoothing kernel)
— Blobs around particles/splatting

SPH Implementations

Takahiro Harada
Kees van Kooten (Playlogic)
NVIDIA PhysX

(SPH Fluids 2.0)

* Source code available

SPH Issues

* Need a /ot of particles
» Computing level surface can be a pain
« Can be difficult to get stable simulation

SPH Improvements

» Spatial hashing
* Variable kernel width

 CFD/SPH Hybrid
— CFD manages general flow
— SPH “splashes”

Surface Simulation

* |dea: for water, all we care about is the air-
water boundary (level surface)

* Why simulate the rest?
* This is what Insomniac R20 system does

R20

* Done by Mike Day, based on Titanic water
— Basic idea: convolve sinusoids procedurally

u

— Much cheaper to multiply in frequency domain and do
FFT (assuming periodic)

R20

* Review
— Sinusoid in spatial domain

R20

e Review

— Can represent as magnitude+phase in
frequency slot

R20

 Review
— Requires periodic function

R20

 Review
— Multiple sinusoids end up at multiple entries

il

i

R20

* Wave speed dependant on wavelength

R20

* Wave speed dependant on wavelength

R20

* Wave speed dependant on wavelength

R20

* Wave speed dependant on wavelength

R20

* Wave speed dependant on wavelength
— |.e. phases update at different rates
— AKA dispersion

R20

» General procedure
— Start with convolved data in (r,¢) form
— Update phase angles for each sinusoid

« Angular velocity*dt
« Dependent on frequency

— Do inverse FFT to get spatial result

R20

* FFT kernel limited to 32x32

« Combine multiple levels via LOD height
field scheme

— Gives high detail close to camera

R20

* Interactive waves
— Just adding in splashes looks fake

— Instead, do some more FFT trickery so all our
work occurs in the same domain

— Non-periodic, so have to manage edges
— Gives nice dispersion effects

R20

* Rendering
— Rendered as height field mesh
— Add normal map for detalil
— Cube map/frame buffer map for reflections
— Distortion effect for refractions

References

Jos Stam, “Stable Fluids”, SIGGRAPH
1999

Mattias Muller, et. al, “Particle-Based Fluid
Simulation for Interactive Applications”,
SIGGRAPH Symposium on Computer
Animation 2003

Jerry Tessendorf, “Simulating Ocean
Water,” SIGGRAPH Course Notes.

http://www.insomniacgames.com/tech

