
1

Numerical Integration

Jim Van Verth
Insomniac Games

jim@essentialmath.com

Essential mathematics for games and interactive applications

Talk Summary

 Going to talk about:
 Euler’s method subject to errors
 Implicit methods help, but complicated
 Verlet methods help, but velocity out of step
 Symplectic methods can be good for both

Our Test Case

So let’s begin our discussion of integration methods with an
overall definition of what I mean by numerical integration.

Our Test Case

Suppose that Mariano Rivera is out playing fetch with his dog.

Our Test Case

xt =?

x0

The dog likes to run and catch the ball in mid-air, and so
Mariano wants to throw the ball where the dog will be after a
certain time,

say at time t. We’ll call the dog’s original position x0, and the
throw location x_t. How can he know where x_t will be?

Constant velocity

v

xt =?

x0

If the dog always runs straight with some velocity v, it’s
simple enough.

Constant velocity

v

xt = x0+vt

x0

We just multiply the velocity by the time and add to the
current position. We can represent this by the function x_t =
x0 + vt.

Constant acceleration
v0

x0

xt = ?

a

Now let’s make it more interesting. Suppose the dog’s velocity
is changing constantly over time, based on some acceleration
A.

Constant acceleration
v0

x0

xt = ?

a

In this case, the path the dog takes is a parabola…

Constant acceleration
v0

x0

xt = x0 + v0t + 1/2at2

a

Represented by this quadratic function.

Variable acceleration

x0

xt = ?

Now suppose the dog’s path doesn’t have these nice
properties. The velocity changes at a non-constant rate, i.e.
the acceleration may change dependent on time, position or
velocity. Now, it’s possible that we could derive a formula for
this case like we did the others, I.e. integrate from
acceleration to get a formula for the velocity function, and
then integrate from velocity to get a function for position but
a) it’s not likely, and b) it may not be a very efficient formula.
So what do we do?

Euler’s method

x0

v0

One possibility is to use our first approach and break our path
into linear pieces. We’ll step a little bit in the direction of the
velocity to update our position, and do the same to update our
velocity. For the sake of simplicity I’ll use the parabola again,
but in principle this works in any case.

Euler’s method

x0

v0

x1

So first we step along the current velocity…

Euler’s method

x0

v0

x1

v0
a

Then update the velocity based on the current acceleration

Euler’s method

x0

v0

x1

v0
a

v1

Like so

Euler’s method

x0

v0

x1
v1

Then we’re ready for the next position step

Euler’s method

x0

v0

x1
v1

x2

Then we’re ready for the next position step

Euler’s method

x0

v0

x1
v1

a

v1

x2

And update velocity

Euler’s method

x0

v0

x1
v1

a

v1

v2
x2

Euler’s method

x0

v0

x1
v1

v2
x2

And there we go.

Euler’s method

x0

v0

x1
v1

v2
x2

!

x i+1 = x i + vi"t
vi+1 = vi + a i"t

We can represent this algebraically as follows: we update the
position with its current derivative times the time step, and
the velocity with its current derivative times the time step.
Pretty simple.

So that’s Euler’s method. While it seems straightforward, it
has problems. Let’s consider another case.

Euler’s method
x0

v0

a0

Suppose Mariano has attached his dog to a tree with a fixed
rod, so the dog can only run in a circle. Hey, he’s a member of
the Yankees, so by definition he’s evil, right? Now he wants to
know where the dog will be at time t. Let’s see what Euler’s
method will do.

Euler’s method

x1

x0
v0

a0

So we step position

Euler’s method

x0x1a0

v0v0

And velocity

Euler’s method

v1 x0x1

v0v0

a0

And velocity

Euler’s method

x0x1

v0

v1

So… that result is not so good. Let’s do one more iteration,
just looking at velocity.

Euler’s method

x2

v2

x0x1

v0

v1

The end result? We are spiraling away from the actual path of
the dog, and our velocities are getting larger. What is going on
here?

Euler’s method

x0

x1v1

v0

One problem is that the velocity varies a lot during the time
step. We are assuming that the initial velocity is a good
estimate of the average velocity across the interval, but in this
case, it clearly is not. This introduces error into the simulation,
and in the case of using Euler’s method with oscillating
systems like the orbit, and springs, that error accumulates in
a way that adds energy. Decreasing how far we step will
decrease the error, but ultimately we will still have problems
with energy gain.

Euler

 Okay for non-oscillating systems
 Explodes with oscillating systems
 Adds energy! Very bad!

Runge-Kutta methods

x0

v0

So remember that our current velocity wasn’t a very good
estimate for the average velocity during the time step. One
solution is to take estimates of the velocity across the interval
and use those to get a better velocity for the Euler step. For
example, we might step halfway,

Runge-Kutta methods

x0

v0

v0.5

And use the position and velocity there to compute a new
velocity and acceleration. Here I’m just showing the velocity to
keep the diagram simple.

Runge-Kutta methods

x0
v0.5

And then take the full time step with the newly calculated
acceleration and velocity.

Runge-Kutta methods

x0
v0.5

x1

And this is known as Midpoint method. As you can see, we can
get better results this way, at least for this example.

Runge-Kutta methods

x0

v0

The most commonly known of these takes a weighted average
of the original velocity and three estimates and is known as
Runge-Kutta 4, or just RK4. The “4” in this case means that
the order of the error is the time step to the 4th power.
Midpoint method is an order 2 method. Euler’s method is a
Runge-Kutta method as well, just order 1.

Runge-Kutta 4

 Very stable and accurate
 Conserves energy well
 But expensive: four evaluations of derivative

Implicit methods
x0

v0

While RK4 is a very good solver, we would like something a
little faster, that only takes one evaluation. One idea is rather
than starting with known values, I.e. with as with the explicit
solver we saw before, we use future values instead. This is
known as an implicit solver. For example, we could take as
our derivative the velocity at the end of the interval instead of
the beginning. That’s pretty straightforward.

Implicit methods
x0

v0

x1

We just jump to our future position,

Implicit methods
x0

v0

x1v1

Calculate the derivative,

Implicit methods
x0

v0

v1

Then jump back and use that derivative

Implicit methods
x0

v0

x1

v1

To um, calculate our future position.

Implicit methods
x0

v0

!

x i+1 = x i + vi+1"t
vi+1 = vi + a i+1"t

x1

v1

And we can represent that algebraically like this. This is
known as Backward Euler. So… clearly there are some
problems here.

Implicit methods
x0

v0

!

x i+1 = x i + vi+1"t
vi+1 = vi + a i+1"t

x1v1

The first is, how can we know what the future values are?
There are a few ways: first, if we know the system, we can try
to derive an analytical solution. That’s not so helpful in the
general case. We can also solve this by building a sparse
linear system and solving for it -- but that can be slow. Or we
can use an explicit solver to step ahead, grab values there,
then feed that into the implicit equation. That’s known as a
predictor-corrector solver: we predict a value with an implicit
method, then correct with an implicit method. However, now
we’re back to taking at least two evaluations.

Implicit methods
x0

v0

!

x i+1 = x i + vi+1"t
vi+1 = vi + a i+1"t

x1

v1

The second issue is that implicit methods don’t add energy,
they remove it. If I were to continue simulating the dog’s
movement, it would spiral into the center. This can be nice if
we want to have a dampening effect, and it will not diverge,
but not so good if we want to conserve energy as much as
possible.

Backward Euler

 Not easy to get implicit values
 More expensive than Euler

 But tends to converge: better but not ideal

Verlet
x0 x-1

Calculating a decent velocity seems to be causing us
problems, so let’s take it out of the equation. Suppose we
have have a previous position, and we’ve generated our
current position by running a stable solver like RK4.

Verlet
x0 x-1

We can subtract the previous position from the current
position to get an approximation to velocity.

Verlet
x0at2 x-1

Then add in an acceleration term.

Verlet
x0

x1

x-1at2

And step.

Verlet

!

x i+1 = 2x i " x i"1 + a#t 2

x0

x1

x-1at2

And the formula for that is this. This is known as Verlet
integration.

Now I’ve exaggerated the result here for effect, and honestly,
my scale is a bit off, but this is a very stable method. The
problem is that we are approximating our velocity. If we want
to do an impulse-based constraint system, where we
instantaneously change velocity based on an impulse -- say
for a collision, or to keep a dog attached to a pole -- we have
nothing to modify. Thomas Jacobsen -- who introduced the
game development community to this method -- has done
some work on modifying positions in response to collision and
constraint, but in my mind I find it difficult to work with.

Verlet

 Leapfrog Verlet

 Velocity Verlet

!

vi+1/ 2 = vi"1/ 2 + a i#t
x i+1 = x i + vi+1/ 2#t

!

vi+1/ 2 = vi + a i"t /2
x i+1 = x i + vi+1/ 2"t
vi+1 = vi+1/ 2 + a i+1"t /2

That said, there are more advanced Verlet methods that do
make use of velocity, but they use a half-velocity, I.e. you
start by stepping half the interval to get your velocity, and
then step full intervals after that. So your velocity is out of
sync with your position. The other issue is that the best of
those -- Velocity Verlet -- uses two evaluations, which we’re
trying to avoid.

Verlet

 Very stable
 Cheap

 Not too bad, but have estimated velocity

Symplectic Euler
x0

v0

a0

So let’s go back to our Euler example again. Suppose we were
to use a mix of explicit and implicit methods. That is, we will
use an explicit method for solving for velocity, but use an
implict method for solving for position. So we’ll update our
velocity first…

Symplectic Euler
x0

v0

v1

v0

a0

Then use that updated velocity to update position, like so:

Symplectic Euler
x0

v1

And the formulas are:

Symplectic Euler

!

vi+1 = vi + a i"t
x i+1 = x i + vi+1"t

x0

v1

That is symplectic Euler, and because we are using an explicit
method for velocity and an implicit method for position, it’s
known as a semi-implicit method. Verlet is another example of
a semi-implicit method -- in fact, symplectic Euler and Verlet
are just variants of each other. The advantage of symplectic
Euler is that we now have a velocity to use for impulses.

Symplectic Euler

!

vi+1 = vi + a i"t
x i+1 = x i + vi+1"t

How does this work? Well, Symplectic Euler still has error, but
it accumulates in a way that maintains stability with oscillating
functions -- it accumulates in periodic fashion as well, adding
and subtracting energy over time. So in our orbit example, we
see the desired circular path as the dashed line. Sympletic
Euler takes -- exaggerated here for effect-- an elliptical path.
So while it may not be as accurate as higher-order methods,
it’s extremely stable. And in many cases, that’s all we need.

Symplectic Euler

 Cheap and stable!

 Not as accurate as RK4

Strictly speaking, Symplectic Euler can still diverge for large
time steps or stiff equations, but it’s more stable than many
other methods under common conditions.

Symplectic Euler

 Cheap and stable!

 Not as accurate as RK4 - but hey, it’s a game

Demo Time

Which To Use?

 With simple forces, standard Euler might be okay
 But constraints, springs, etc. require stability
 Recommendation: Symplectic Euler

 Generally stable
 Simple to compute (just swap velocity and position terms)

 More complex integrators available if you need them --
see references

Implicit Euler is best if you want strict stability and don’t mind
the dampening effect.

References
 Burden, Richard L. and J. Douglas Faires,

Numerical Analysis, PWS Publishing Company,
Boston, MA, 1993.

 Witken, Andrew, David Baraff, Michael Kass,
SIGGRAPH Course Notes, Physically Based
Modelling, SIGGRAPH 2002.

 Eberly, David, Game Physics, Morgan Kaufmann,
2003.

References

 Hairer, et al, “Geometric Numerical
Integration Illustrated by the Störmer/Verlet
method,” Acta Numerica (2003), pp 1-51.

 Robert Bridson, Notes from CPSC 533d:
Animation Physics, University of BC.

