
Hybrid Stereoscopy in
Ratchet & Clank: All 4 One

Jim Van Verth
Insomniac Games

www.insomniacgames.com
jim@essentialmath.com

Introductory Bits

• Talking about stereo solution for Ratchet &
Clank: All 4 One

• Combination of standard stereographic
and reprojection techniques

• No demo, sorry (stay tuned)

Brief History

• Wanted stereo in A4O
• Crytek announced reprojection
• Prototype Dec 2010
• Waffled between standard and reproj
• Shared work with R3
• Final solution May 2011

Outline

• Standard stereo projection
• Reprojection prototype
• Final solution
• Issues and future work

Perspective Projection

view plane

-x

+z

Perspective Projection

view plane

P
-x

+z

Perspective Projection

view plane

P
P´

-x

+z

Perspective Projection

view plane

P
P´

d =cot(1/2 fov)

-x

+z

Perspective Projection

• In matrix form (Direct3D):

• Reciprocal divide gives projected point

Stereographic Projection

• Two eyes, separated

Stereographic Projection

• Two eyes, separated

Stereographic Projection

• Two eyes, separated

Bad convergence

-x

+z

Stereographic Projection

• Two eyes, separated, toed in

Planes don’t align

-x

+z

Stereographic Projection

• Two eyes, separated, sheared

Nice overlap

-x

+z

Stereographic Projection

• Two eyes, separated, sheared

Separation

Convergence

Stereographic Projection

• Separation
– Physical separation: interocular
– Virtual separation: interaxial

• Convergence distance
– Could be in view frame or NDC frame
– Know what frame you’re in!

Stereographic Projection

• Two pieces:
– Add xz-shear to projection matrix
– Translate cameras along x-axis

Stereographic Projection

• Shear

• Camera translation

• Left eye: -S, +T
• Right eye: +S, -T

(D3D)

Stereographic Projection

• Can incorporate camera xlate into projection

Stereographic Projection

• Picking S & T

• Where
i = interocular (distance between pupils)
w = monitor width
c = convergence plane distance
fov = horizontal field of view

(From NVIDIA talk, amongst others)

Stereographic Projection

• Produces nice results
• But: must render everything twice
• Can cut framerate by half
• If running at 30fps, not so great

Stereographic Reprojection

• Idea:
– Render view from one eye
– Use depth and color information to generate

other eye’s view via pixel shader (or SPU)
– In theory, much faster!
– Only need worry about x (really u) direction
– Note: need access to depth & color

• So render to rendertarget or FBO, then copy to
display

Stereographic Reprojection

P

Convergence plane

-x

+z

Stereographic Reprojection

PPleft

-x

+z

Stereographic Reprojection

PPleft

Pright

-x

+z

Stereographic Reprojection

• How to find Pright from Pleft?

PPleft

Pright

-x

+z

Stereographic Reprojection

• Similar triangles

PPleft

Prights

c

z

-x

+z

Stereographic Reprojection

• Similar triangles

PPleft

Prights

c

z

-x

+z

Stereographic Reprojection

• Similar triangles

PPleft

Prights

c

z

-x

+z

Stereographic Reprojection

• This works if we can scatter:
– we know Pleft and z

• But in pixel shader we can only gather
• I.e. we are rendering right image, so only

know Pright, and not z
• Have to search
• Much like parallax occlusion mapping

First Idea

• General concept:
– Iterate along scanline in left-eye image around

our texel location Pright

– Reproject from left location Pleft
* to get

potential right location
– If passes our texel location Pright, have hit
– Use current and previous Pleft

* texels to set
our texel color

First Idea

Pleft
*

Pright

-x

+z

Ptest

search range

First Idea

Pright

-x

+z

Pleft
*

Ptest

First Idea

Pright

-x

+z

Pleft
*

Ptest

First Idea

Pright

-x

+z

Pleft
*

Ptest

First Idea

Pright

-x

+z

Pleft
*

Ptest

First Idea

Pright

-x

+z

Pleft
*

Ptest

First Idea

Pright

-x

+z

Pleft
*

Projection passed Pright, Stop

Ptest

First Idea

• How far to search?
– Range of texels around Pright from -s to s
– Could search farther before our current texel

to capture additional negative parallax
• What color to choose?

– Lerp by tex coords testprev & testcurr

First Idea

• Note: need linear depth
• Depth buffer is non-linear
• Can get linear depth via

• Careful of precision! Ideally use float buffer

First Idea
float orig_x = tex_coords.x;
float x_val = orig_x - abs(g_stereo_settings.x) - 1.0f;
float end_val = orig_x + abs(g_stereo_settings.x) + 1.0f;
float prev_x_val = x_val;
float prev_test = orig_x;
while (x_val <= end_val)
{

tex_coords.x = x_val;
float l = GetLinearDepth(g_depth_map, tex_coords.xy);

 float test = x_val + g_stereo_settings.x + g_stereo_settings.y / l;
 if (test > orig_x)

{
float t = (orig_x - prev_test)/(test-prev_test);

 tex_coords.x = (1-t)*prev_x_val + t*x_val;
o.m_color = h4tex2D(g_tex2, tex_coords.xy).rgb;

 break;
}

 else
 {

prev_x_val = x_val;
prev_test = test;

 x_val = x_val + 1.0f;
 }
}
return o;

First Idea

• Problems
– As s increases, so does # of texels we search
– Lerp blend makes for muddy edges,

particularly against distant objects
– Also, completely broken

First Idea - Da Bug

• Left eye standard

First Idea - Da Bug

• Right eye standard

First Idea - Da Bug

• Right eye reprojected

First Idea - Da Bug

Pleft

Pright

Ideal Result

-x

+z

First Idea - Da Bug

Pleft
*

Pright

Restart search

-x

+z

First Idea - Da Bug

Pleft
*

Pright

Early out

-x

+z

Despair and Salvation

• Could not see solution
– Stuck in pixel-search metaphor

• Then: paper by van de Hoef and Zalmstra

• The light dawns - go back to parallax
mapping

Better Idea

Pright

-x

+z

Better Idea

Pright

-x

+z

Better Idea

Pright

-x

+z

Better Idea

Pright

-x

+z

Better Idea

Pright

-x

+z

Better Idea

Pright

-x

+z

Another way to look at it

Pright

Pleft
*

-x

+z

Another way to look at it

Pright

Pleft
*

-x

+z

Another way to look at it

Pright

Pleft
*

-x

+z

Depth sampled is closer than
ray intersection

Yet another way to look at it

Pright

Pleft
*

-x

+z

Look at ray through Pleft
* and

reproject

Ptest

Yet another way to look at it

Pleft

-x

+z

Pright
Ptest

Yet another way to look at it

Pleft

-x

+z

Pright Ptest

Yet another way to look at it

Pleft

I.e. search in -x direction!

-x

+z

Pright Ptest

Better color sampling

• From van de Hoef and Zalmstra
• Idea: use depth at left eye test point to

reproject from right to left to get color

Color sampling

Pright

Pleft

Get depth from test point

Color sampling

Pright

Pleft

Get depth from test point

Color sampling

Pright

Pleft

Reproject back to get new uv

Better Iterations

• Original method: dependant on s
• van de Hoef and Zalmstra: one sample!
• Unhappy with results
• Went back to parallax mapping idea:

– fixed # samples at intervals

Reprojection, take 2
float s = sign(stereo_params.y);
float orig_x = tex_coords.x;
float shift = 0.5f* g_stereo_settings.x;
float end_shift = -g_stereo_settings.x;
float step = (end_shift - shift)*0.0625f;

int index = 0;
while (index <= 16)
{

tex_coords.x = orig_x + s+ shift;
float l = GetLinearDepth(g_depth_map, tex_coords.xy);

 float test = shift + g_stereo_settings.x + g_stereo_settings.y / l;
 if (s*test >= 0.0f)

{
out_tex_coords.x = orig_x - g_stereo_settings.x - g_stereo_settings.y / l;
break;

}
shift = shift + step; index = index + 1;

}

o.m_color = h4tex2D(g_color_map, out_tex_coords.xy);
float lin = GetLinearDepth(g_depth_map, out_tex_coords.xy);
o.m_depth = g_misc_consts.x = g_misc_consts.y / l;
return o;

Reprojection, take 2

• Faster (at most 16 samples)
• More accurate
• Less blurry
• But still:

– Artifacts
– Alpha-blended geometry painted on

Artifacts

• Negative parallax bad

Pright

Convergence plane

Artifacts

• Negative parallax bad

Pright

Artifacts

• Negative parallax bad

Pright

Artifacts: Parallax

• Standard view

Artifacts

• Right-to-left reprojection

Artifacts

• Negative parallax
– Avoid it, bring in convergence plane

Pright

Artifacts

• Left eye can’t see side that right eye can
• No data in left image
• What to fill with? (Reconstruction)

Artifacts

• Worse as object gets closer

Artifacts

• Similar issue when view is obscured

Artifacts

• Reconstruction issue
– Repeat background or foreground
– Can also bring in convergence plane
– Use center reprojection to minimize it

Artifacts: Reconstruction

• Standard left view

Artifacts: Reconstruction

• Right to left reprojection

Artifacts: Reconstruction

• Standard right view

Center Reprojection

• Render standard monoscopic view
• Reproject to both left and right
• Twice as long as left-to-right (or right-to-

left) but better quality

Center Reprojection

• Standard projection

Center Reprojection

• Left-to-right reprojection

Center Reprojection

• Center reprojection

Artifacts

• Viewport edge

Artifacts

• Viewport edge
Can’t generate this

Artifacts

• Viewport edge

Increase hfov

Artifacts

• Viewport edge

Crop on display

Artifacts

• Viewport edge

Gives full view

Alpha-Blended Objects

• No depth, looks painted on
• Solution:

– Render opaque objects
– Reproject to left and right images
– Must write depth as well as color!
– Render alpha into both images

• Tricky bit:
– Aligning alpha with opaque

Alpha-Blended Objects

where

Standard Stereo Reprojection

Alpha-Blended Objects

where

Standard Stereo Reprojection

What is s?

Alpha Blended Objects

• Derive for left-to-right
– Project point to left view

– Consider only x after w divide:

Alpha Blended Objects

• Derive for left-to-right
– Can expand and simplify

– Similarly
(since d = cot(fov/2))

Alpha Blended Objects

• Derive for left-to-right
– Subtracting to get shift

– This is range [-1,1], halve for range [0,1]:

Alpha Blended Objects

• Derive for left-to-right
– Compare to previous equation

– So s is just S!
– For center reprojection, S/2

Alpha-Blended Objects

where

Standard Stereo Reprojection

Alpha-Blended Objects

where

Standard Stereo Reprojection

(might scale by buffer width)

Alpha-Blended Objects

• Be careful of signs
• For left eye

-S, +T, -s, +sc/z

• For right eye
+S, -T, +s, -sc/z

Alpha-Blended Object

• End result: quite nice!
• Alpha objects line up and produce great

3D effect

Future Work

• Alpha and opaque still not quite matching
– Could be:

• sampling off texel centers
• reconstruction errors
• float error
• bad color buffer copy
• fov tweaks
• lighting in alpha pass

Future Work

• Artifacts at edge of reconstruction

Future Work

• Other color sampling possibilities
– Try to find exact height field intersection

• Adaptive iterations
– like parallax mapping

Summary

• Reprojection a success
– Good frame rate
– Reasonable results
– Fun challenge

References

• Marries van de Hoef and Bas Zalmstra,
“Fast Gather-based Construction of
Stereoscopic Images Using Reprojection,”
Utrecht University, 2011.

• Natalya Tatarchuk, “Dynamic Parallax
Occlusion Mapping with Approximate Soft
Shadows,” ATI, 2006

References

• Samuel Gateau, “Stereoscopic 3D
Demystified: From Theory to
Implementation in Starcraft 2,” NVIDIA,
GDC 2011

• Chris Hall, Rob Hall, and Dave Edwards,
“Rendering in Cars 2,” Advances in Real-
Time Rendering in Games, SIGGRAPH
2011

Questions?

Thank you for coming!Thank you for coming!

jim@essentialmath.com

